【Java-10】深入浅出线程安全、死锁、状态、通讯、线程池

主要内容

  • 线程安全
  • 线程死锁
  • 线程的状态
  • 线程间通讯
  • 线程池

1 线程安全

1.1 线程安全产生的原因

  • 多个线程在对共享数据进行读改写的时候,可能导致的数据错乱就是线程的安全问题了

  • 问题出现的原因 :
    多个线程在对共享数据进行读改写的时候,可能导致的数据错乱就是线程的安全问题了

1.2 线程的同步

  • 概述 : java允许多线程并发执行,当多个线程同时操作一个可共享的资源变量时(如数据的增删改查),将会导致数据不准确,相互之间产生冲突,因此加入同步锁以避免在该线程没有完成操作之前,被其他线程的调用,从而保证该变量的唯一性和准确性

  • 分类

    • 同步代码块
    • 同步方法
    • 锁机制。Lock

1.3 同步代码块

同步代码块 : 锁住多条语句操作共享数据,可以使用同步代码块实现

第一部分 : 格式
           synchronized(任意对象) {
                   多条语句操作共享数据的代码
           }

第二部分 : 注意
           1 默认情况锁是打开的,只要有一个线程进去执行代码了,锁就会关闭
           2 当线程执行完出来了,锁才会自动打开

第三部分 : 同步的好处和弊端
            好处 : 解决了多线程的数据安全问题
            弊端 : 当线程很多时,因为每个线程都会去判断同步上的锁,这是很耗费资源的,无形中会降低程序的运行效率


### 1.4 同步方法

同步方法:就是把synchronized关键字加到方法上

格式:修饰符 synchronized 返回值类型 方法名(方法参数) { }

同步代码块和同步方法的区别:
1 同步代码块可以锁住指定代码,同步方法是锁住方法中所有代码
2 同步代码块可以指定锁对象,同步方法不能指定锁对象

注意 : 同步方法时不能指定锁对象的 , 但是有默认存在的锁对象的。
1 对于非static方法,同步锁就是this。
2 对于static方法,我们使用当前方法所在类的字节码对象(类名.class)。 Class类型的对象


```java
package com.itheima.synchronized_demo2;

/*
    同步方法:就是把synchronized关键字加到方法上

    格式:修饰符 synchronized 返回值类型 方法名(方法参数) {    }

    同步代码块和同步方法的区别:
        1 同步代码块可以锁住指定代码,同步方法是锁住方法中所有代码
        2 同步代码块可以指定锁对象,同步方法不能指定锁对象

    注意 : 同步方法时不能指定锁对象的 , 但是有默认存在的锁对象的。
        1 对于非static方法,同步锁就是this。
        2 对于static方法,我们使用当前方法所在类的字节码对象(类名.class)。   Class类型的对象

 */
public class Ticket implements Runnable {
    private int ticketCount = 100; // 一共有一百张票

    @Override
    public void run() {
        while (true) {
            if (method()) {
                break;
            }
        }
    }

    private synchronized boolean method() {
        // 如果票的数量为0 , 那么停止买票
        if (ticketCount <= 0) {
            return true;
        } else {
            // 模拟出票的时间
            try {
                Thread.sleep(100);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }

            // 有剩余的票 , 开始卖票
            ticketCount--;
            System.out.println(Thread.currentThread().getName() + "卖出一张票,剩下" + ticketCount + "张");
            return false;
        }
    }
}

package com.bn.synchronized_demo2;

/*
    1 定义一个类Ticket实现Runnable接口,里面定义一个成员变量:private int ticketCount = 100;
    2 在Ticket类中重写run()方法实现卖票,代码步骤如下
        A:判断票数大于0,就卖票,并告知是哪个窗口卖的
        B:票数要减1
        C:卖光之后,线程停止
    3 定义一个测试类TicketDemo,里面有main方法,代码步骤如下
        A:创建Ticket类的对象
        B:创建三个Thread类的对象,把Ticket对象作为构造方法的参数,并给出对应的窗口名称
        C:启动线程

 */
public class TicketDemo {
    public static void main(String[] args) {
        // 创建任务类对象
        Ticket ticket = new Ticket();

        // 创建三个线程类对象
        Thread t1 = new Thread(ticket);
        Thread t2 = new Thread(ticket);
        Thread t3 = new Thread(ticket);
        // 给三个线程命名
        t1.setName("窗口1");
        t2.setName("窗口2");
        t3.setName("窗口3");
        // 开启三个线程
        t1.start();
        t2.start();
        t3.start();
    }
}

1.5 Lock锁

虽然我们可以理解同步代码块和同步方法的锁对象问题,但是我们并没有直接看到在哪里加上了锁,在哪里释放了锁,
为了更清晰的表达如何加锁和释放锁,JDK5以后提供了一个新的锁对象Lock

Lock中提供了获得锁和释放锁的方法
    void lock():获得锁
    void unlock():释放锁

Lock是接口不能直接实例化,这里采用它的实现类ReentrantLock来实例化
    ReentrantLock的构造方法
    ReentrantLock():创建一个ReentrantLock的实例

注意:多个线程使用相同的Lock锁对象,需要多线程操作数据的代码放在lock()和unLock()方法之间。一定要确保unlock最后能够调用
package com.bn.synchronized_demo3;

import java.util.concurrent.locks.ReentrantLock;

/*
    虽然我们可以理解同步代码块和同步方法的锁对象问题,但是我们并没有直接看到在哪里加上了锁,在哪里释放了锁,
    为了更清晰的表达如何加锁和释放锁,JDK5以后提供了一个新的锁对象Lock

    Lock中提供了获得锁和释放锁的方法
        void lock():获得锁
        void unlock():释放锁

    Lock是接口不能直接实例化,这里采用它的实现类ReentrantLock来实例化
        ReentrantLock的构造方法
        ReentrantLock​():创建一个ReentrantLock的实例

    注意:多个线程使用相同的Lock锁对象,需要多线程操作数据的代码放在lock()和unLock()方法之间。一定要确保unlock最后能够调用

 */
public class Ticket implements Runnable {
    private int ticketCount = 100; // 一共有一百张票
    ReentrantLock lock = new ReentrantLock();

    @Override
    public void run() {
        while (true) {
            try {
                lock.lock();// 加锁
                // 如果票的数量为0 , 那么停止买票
                if (ticketCount <= 0) {
                    break;
                } else {
                    // 模拟出票的时间
                    Thread.sleep(100);
                    // 有剩余的票 , 开始卖票
                    ticketCount--;
                    System.out.println(Thread.currentThread().getName() + "卖出一张票,剩下" + ticketCount + "张");
                }
            } catch (InterruptedException e) {
                e.printStackTrace();
            } finally {
                lock.unlock();// 释放锁
            }
        }
    }
}

package com.bn.synchronized_demo3;

/*
    1 定义一个类Ticket实现Runnable接口,里面定义一个成员变量:private int ticketCount = 100;
    2 在Ticket类中重写run()方法实现卖票,代码步骤如下
        A:判断票数大于0,就卖票,并告知是哪个窗口卖的
        B:票数要减1
        C:卖光之后,线程停止
    3 定义一个测试类TicketDemo,里面有main方法,代码步骤如下
        A:创建Ticket类的对象
        B:创建三个Thread类的对象,把Ticket对象作为构造方法的参数,并给出对应的窗口名称
        C:启动线程

 */
public class TicketDemo {
    public static void main(String[] args) {
        // 创建任务类对象
        Ticket ticket = new Ticket();

        // 创建三个线程类对象
        Thread t1 = new Thread(ticket);
        Thread t2 = new Thread(ticket);
        Thread t3 = new Thread(ticket);
        // 给三个线程命名
        t1.setName("窗口1");
        t2.setName("窗口2");
        t3.setName("窗口3");
        // 开启三个线程
        t1.start();
        t2.start();
        t3.start();
    }
}

2 线程死锁

2.1 概述 :

  • 死锁是一种少见的,而且难于调试的错误,在两个线程对两个同步锁对象具有循环依赖时,就会大概率的出现死锁。我们要避免死锁的产生。否则一旦死锁,除了重启没有其他办法的

2.2 产生条件 :

  • 多个线程
  • 存在锁对象的循环依赖

2.3 代码实践

package com.n.deadlock_demo;

/*
    死锁 :
        死锁是一种少见的,而且难于调试的错误,在两个线程对两个同步锁对象具有循环依赖时,就会大概率的出现死锁。
        我们要避免死锁的产生。否则一旦死锁,除了重启没有其他办法的
 */
public class DeadLockDemo {
    public static void main(String[] args) {
        String 筷子A = "筷子A";
        String 筷子B = "筷子B";

        new Thread(new Runnable() {
            @Override
            public void run() {
                while (true) {
                    synchronized (筷子A) {
                        System.out.println("小白拿到了筷子A ,等待筷子B....");
                        synchronized (筷子B) {
                            System.out.println("小白拿到了筷子A和筷子B , 开吃!!!!!");
                        }
                    }
                    try {
                        Thread.sleep(100);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
            }
        }, "小白").start();


        new Thread(new Runnable() {
            @Override
            public void run() {
                while (true) {
                    synchronized (筷子B) {
                        System.out.println("小黑拿到了筷子B ,等待筷子A....");
                        synchronized (筷子A) {
                            System.out.println("小黑拿到了筷子B和筷子A , 开吃!!!!!");
                        }
                    }
                    try {
                        Thread.sleep(100);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
            }
        }, "小黑").start();
    }
}

3 线程的状态

在这里插入图片描述

4 线程通信

  • 线程间的通讯技术就是通过等待和唤醒机制,来实现多个线程协同操作完成某一项任务,例如经典的生产者和消费者案例。等待唤醒机制其实就是让线程进入等待状态或者让线程从等待状态中唤醒,需要用到两种方法,如下:

  • 等待方法 :

    • void wait() 让线程进入无限等待。
    • void wait(long timeout) 让线程进入计时等待
    • 以上两个方法调用会导致当前线程释放掉锁资源。
  • 唤醒方法 :

    • void notify() 唤醒在此对象监视器(锁对象)上等待的单个线程。
    • void notifyAll() 唤醒在此对象监视器上等待的所有线程。
    • 以上两个方法调用不会导致当前线程释放掉锁资源
  • 注意

    • 等待和唤醒的方法,都要使用锁对象调用(需要在同步代码块中调用)
    • 等待和唤醒方法应该使用相同的锁对象调用
  • package com.v.waitnotify_demo;
    
    /*
        1 线程进入无限等待
            注意:进入无限等待需要使用锁在同步代码中调用wait方法
     */
    public class Test1 {
        public static void main(String[] args) {
            Object obj = new Object(); // 作为锁对象
    
            new Thread(new Runnable() {
                @Override
                public void run() {
                    synchronized (obj) {
                        System.out.println("线程开始执行");
                        System.out.println("线程进入无线等待....");
                        try {
                            obj.wait(); // 进入无线等待状态 , 并释放锁
                        } catch (InterruptedException e) {
                            e.printStackTrace();
                        }
                        System.out.println("无线等待被唤醒....");
                    }
                }
            }).start();
        }
    }
    
    
  • package com.v.waitnotify_demo;
    
    /*
        线程进入无限等待后被唤醒
        注意:等待和唤醒是两个或多个线程之间实现的。进入无限等待的线程是不会自动唤醒,只能通过其他线程来唤醒。
     */
    public class Test2 {
        public static void main(String[] args) {
            Object obj = new Object(); // 作为锁对象
    
            new Thread(new Runnable() {
                @Override
                public void run() {
                    synchronized (obj) {
                        System.out.println("线程开始执行");
                        System.out.println("线程进入无线等待....");
                        try {
                            obj.wait(); // 进入无线等待状态 , 并释放锁
                        } catch (InterruptedException e) {
                            e.printStackTrace();
                        }
                        System.out.println("无线等待被唤醒....");
                    }
                }
            }).start();
    
    
            new Thread(new Runnable() {
                @Override
                public void run() {
                    try {
                        Thread.sleep(3000);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                    synchronized (obj) {
                        obj.notify();// 随机唤醒此监视器中等待的线程 , 不会释放锁
                        System.out.println("唤醒后 , 5秒钟后释放锁");
                        try {
                            Thread.sleep(5000);
                        } catch (InterruptedException e) {
                            e.printStackTrace();
                        }
                    }// 释放锁
                }
            }).start();
        }
    }
    
    
  • package com.v.waitnotify_demo;
    
    /*
        3 线程进入计时等待并唤醒
            注意:进入计时等待的线程,时间结束前可以被其他线程唤醒。时间结束后会自动唤醒
     */
    public class Test3 {
        public static void main(String[] args) {
            new Thread(new Runnable() {
                @Override
                public void run() {
                    synchronized (Test3.class) {
                        System.out.println("获取到锁 , 开始执行");
                        try {
                            System.out.println("进入计时等待...3秒");
                            Test3.class.wait(3000);
                        } catch (InterruptedException e) {
                            e.printStackTrace();
                        }
                        System.out.println("自动唤醒.");
                    }
                }
            }).start();
        }
    }
    
    
  • 生产者和消费者案例
    package com.vv.waitnotify_demo2;
    
    import sun.security.krb5.internal.crypto.Des;
    
    /*
        生产者步骤:
            1,判断桌子上是否有汉堡包
                如果有就等待,如果没有才生产。
            2,把汉堡包放在桌子上。
            3,叫醒等待的消费者开吃
     */
    public class Cooker implements Runnable {
        @Override
        public void run() {
            while (true) {
                synchronized (Desk.lock) {
                    if (Desk.count == 0) {
                        break;
                    } else {
                        if (Desk.flag) {
                            // 桌子上有食物
                            try {
                                Desk.lock.wait();
                            } catch (InterruptedException e) {
                                e.printStackTrace();
                            }
                        } else {
                            // 桌子上没有食物
                            System.out.println("厨师生产了一个汉堡包...");
                            Desk.flag = true;
                            Desk.lock.notify();
                        }
                    }
                }
            }
        }
    }
    
    
    package com.vv.waitnotify_demo2;
    
    import sun.security.krb5.internal.crypto.Des;
    
    /*
        消费者步骤:
            1,判断桌子上是否有汉堡包。
            2,如果没有就等待。
            3,如果有就开吃
            4,吃完之后,桌子上的汉堡包就没有了
                叫醒等待的生产者继续生产
                汉堡包的总数量减一
     */
    public class Foodie implements Runnable {
        @Override
        public void run() {
            while (true) {
                synchronized (Desk.lock) {
                    if (Desk.count == 0) {
                        break;
                    } else {
                        if (Desk.flag) {
                            // 桌子上有食物
                            System.out.println("吃货吃了一个汉堡包...");
                            Desk.count--; // 汉堡包的数量减少一个
                            Desk.flag = false;// 桌子上的食物被吃掉 , 值为false
                            Desk.lock.notify();
                        } else {
                            // 桌子上没有食物
                            try {
                                Desk.lock.wait();
                            } catch (InterruptedException e) {
                                e.printStackTrace();
                            }
                        }
                    }
                }
            }
        }
    }
    
    
    package com.vv.waitnotify_demo2;
    
    public class Test {
        public static void main(String[] args) {
            new Thread(new Foodie()).start();
            new Thread(new Cooker()).start();
        }
    }
    
    

5 线程池

5.1 线程使用存在的问题

  • 如果并发的线程数量很多,并且每个线程都是执行一个时间很短的任务就结束了,这样频繁创建线程就会大大降低系统的效率,因为频繁创建线程和销毁线程需要时间。
    如果大量线程在执行,会涉及到线程间上下文的切换,会极大的消耗CPU运算资源

5.2 线程池的介绍

  • 其实就是一个容纳多个线程的容器,其中的线程可以反复使用,省去了频繁创建线程对象的操作,无需反复创建线程而消耗过多资源。

5.3 线程池使用的大致流程

  • 创建线程池指定线程开启的数量
  • 提交任务给线程池,线程池中的线程就会获取任务,进行处理任务。
  • 线程处理完任务,不会销毁,而是返回到线程池中,等待下一个任务执行。
  • 如果线程池中的所有线程都被占用,提交的任务,只能等待线程池中的线程处理完当前任

5.4 线程池的好处

  • 降低资源消耗。减少了创建和销毁线程的次数,每个工作线程都可以被重复利用,可执行多个任务。
  • 提高响应速度。当任务到达时,任务可以不需要等待线程创建 , 就能立即执行。
  • 提高线程的可管理性。可以根据系统的承受能力,调整线程池中工作线线程的数目,防止因为消耗过多的内存 (每个线程需要大约1MB内存,线程开的越多,消耗的内存也就越大,最后死机)。

5.4 Java提供好的线程池

  • java.util.concurrent.ExecutorService 是线程池接口类型。使用时我们不需自己实现,JDK已经帮我们实现好了
  • 获取线程池我们使用工具类java.util.concurrent.Executors的静态方
    • public static ExecutorService newFixedThreadPool (int num) : 指定线程池最大线程池数量获取线程池
  • 线程池ExecutorService的相关方法
    • Future submit(Callable task)
    • Future<?> submit(Runnable task)
  • 关闭线程池方法(一般不使用关闭方法,除非后期不用或者很长时间都不用,就可以关闭)
    • void shutdown() 启动一次顺序关闭,执行以前提交的任务,但不接受新任务

5.5 线程池处理Runnable任务

package com.v.threadpool_demo;

import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

/*
    1 需求 :
        使用线程池模拟游泳教练教学生游泳。
        游泳馆(线程池)内有3名教练(线程)
        游泳馆招收了5名学员学习游泳(任务)。

    2 实现步骤:
        创建线程池指定3个线程
        定义学员类实现Runnable,
        创建学员对象给线程池
 */
public class Test1 {
    public static void main(String[] args) {
        // 创建指定线程的线程池
        ExecutorService threadPool = Executors.newFixedThreadPool(3);

        // 提交任务
        threadPool.submit(new Student("小花"));
        threadPool.submit(new Student("小红"));
        threadPool.submit(new Student("小明"));
        threadPool.submit(new Student("小亮"));
        threadPool.submit(new Student("小白"));

        threadPool.shutdown();// 关闭线程池
    }
}

class Student implements Runnable {
    private String name;

    public Student(String name) {
        this.name = name;
    }

    @Override
    public void run() {
        String coach = Thread.currentThread().getName();
        System.out.println(coach + "正在教" + name + "游泳...");

        try {
            Thread.sleep(3000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        System.out.println(coach + "教" + name + "游泳完毕.");
    }
}

5.6 线程池处理Callable任务

package com.v.threadpool_demo;

import java.util.concurrent.*;

/*
    需求: Callable任务处理使用步骤
        1 创建线程池
        2 定义Callable任务
        3 创建Callable任务,提交任务给线程池
        4 获取执行结果

    <T> Future<T> submit(Callable<T> task) : 提交Callable任务方法    
    返回值类型Future的作用就是为了获取任务执行的结果。
    Future是一个接口,里面存在一个get方法用来获取值

    练一练:使用线程池计算 从0~n的和,并将结果返回
 */
public class Test2 {
    public static void main(String[] args) throws ExecutionException, InterruptedException {
        // 创建指定线程数量的线程池
        ExecutorService threadPool = Executors.newFixedThreadPool(10);

        Future<Integer> future = threadPool.submit(new CalculateTask(100));
        Integer sum = future.get();
        System.out.println(sum);
    }
}

// 使用线程池计算 从0~n的和,并将结果返回
class CalculateTask implements Callable<Integer> {
    private int num;

    public CalculateTask(int num) {
        this.num = num;
    }

    @Override
    public Integer call() throws Exception {
        int sum = 0;// 求和变量
        for (int i = 0; i <= num; i++) {
            sum += i;
        }
        return sum;
    }
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/24427.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

第五十天学习记录:C语言进阶:位段

位段 什么是位段 位段的声明和结构是类似的&#xff0c;有两个不同&#xff1a; 1、位段的成员可以是int,unsigned int或signed int。 2、位段的成员名后边有一个冒号和一个数字。 #define _CRT_SECURE_NO_WARNINGS 1#include <stdio.h>//位段-二进制位 struct A {int …

GoWeb -- gin框架的入门和使用(2)

前言 书接上回&#xff0c;在gin的框架使用中&#xff0c;还有着许多方法以及它们的作用&#xff0c;本篇博客将会接着上次的内容继续记录本人在学习gin框架时的思路和笔记。 如果还没有看过上篇博客的可以点此跳转。 map参数 请求url&#xff1a; http://localhost:8080/us…

什么是IPAM?如何使用IPAM来管理IP地址和DHCP?

在计算机网络中&#xff0c;IPAM&#xff08;IP Address Management&#xff09;是一种用于管理IP地址和DHCP&#xff08;Dynamic Host Configuration Protocol&#xff09;的工具或系统。IPAM旨在简化和集中管理IP地址分配、子网划分和DHCP配置等任务。本文将详细介绍IPAM的概…

奇偶分频电路

目录 偶数分频 寄存器级联法 计数器法 奇数分频 不满足50%占空比 50%占空比 偶数分频 寄存器级联法 寄存器级联法能实现2^N的偶数分频&#xff0c;具体做法是采用寄存器结构的电路&#xff0c;每当时钟上升沿到来的时候对输出结果进行翻转&#xff0c;以此来实现偶数分…

chatgpt赋能python:Python中日期转换:从字符串到日期对象

Python中日期转换&#xff1a;从字符串到日期对象 作为一个经验丰富的Python工程师&#xff0c;日期转换在我的日常编码工作中经常遇到。Python提供了一些内置函数和模块&#xff0c;可以将字符串转换为日期对象或将日期对象格式化为特定的字符串。本篇文章将带您深入了解Pyth…

【JavaSE】Java基础语法(二十二):包装类

文章目录 1. 基本类型包装类2. Integer类3. 自动拆箱和自动装箱4. int和String类型的相互转换 1. 基本类型包装类 基本类型包装类的作用 将基本数据类型封装成对象的好处在于可以在对象中定义更多的功能方法操作该数据常用的操作之一&#xff1a;用于基本数据类型与字符串之间的…

黑马Redis视频教程实战篇(三)

目录 一、优惠券秒杀 1.1 全局唯一ID 1.2 Redis实现全局唯一ID 1.3 添加优惠卷 1.4 实现秒杀下单 1.5 库存超卖问题分析 1.6 代码实现乐观锁解决超卖问题 1.7 优惠券秒杀-一人一单 1.8 集群环境下的并发问题 二、分布式锁 2.1 基本原理和实现方式对比 2.2 Redis分布…

【计算思维题】少儿编程 蓝桥杯青少组计算思维真题及详细解析第6套

少儿编程 蓝桥杯青少组计算思维真题及详细解析第6套 1、兰兰有一些数字卡片,从 1 到 100 的数字都有,她拿出几张数字卡片按照一定顺序摆放。想一想,第 5 张卡片应该是 A、11 B、12 C、13 D、14 答案:C 考点分析:主要考查小朋友们的观察能力和数学推理能力,从给定的图…

交换机的4种网络结构方式:级联方式、堆叠方式、端口聚合方式、分层方式

交换机是计算机网络中重要的网络设备之一&#xff0c;用于实现局域网&#xff08;LAN&#xff09;内部的数据转发和通信。交换机可以采用不同的网络结构方式来满足不同的网络需求和拓扑结构。本文将详细介绍交换机的四种网络结构方式&#xff1a;级联方式、堆叠方式、端口聚合方…

特瑞仕|关于无线射频

无线射频&#xff08;Radio Frequency, RF&#xff09;是指在一定频率范围内&#xff0c;通过无线电波进行通信和传输信息的技术。随着移动通信、物联网、智能家居等领域的不断发展&#xff0c;无线射频技术已经成为现代社会中不可或缺的一部分。本文将从以下几个方面对无线射频…

230530-论文整理-课题组2

对这些研究有点兴趣颇微。 文章目录 Rethinking Dense Retrieval’s Few-Shot AbilityDecoder-Only or Encoder-Decoder? Interpreting Language Model as a Regularized Encoder-DecoderPLOME: Pre-training with Misspelled Knowledge for Chinese Spelling CorrectionRead…

一般小型企业,一个CRM系统要多少钱?都有哪些功能?

客户关系管理crm多少钱一套&#xff1f; 不同CRM要价不同&#xff0c;甚至同一款CRM产品在不同客户方部署下来的价格也是有差别的。 这篇给大家分享几款可实操的CRM管理软件的价位&#xff0c;有需要的可以做以参考&#xff01; 一、简道云CRM管理系统 模版地址&#xff1a;…

《开箱元宇宙》爱心熊通过 The Sandbox 与粉丝建立更紧密的联系

你们有没有想过 The Sandbox 如何融入世界上最具标志性的品牌和名人的战略&#xff1f;在本期《开箱元宇宙》系列中&#xff0c;我们与 Cloudco Entertainment 的数字内容顾问 Derek Roberto 聊天&#xff0c;了解为什么爱心熊决定在 The Sandbox 中试验 web3&#xff0c;以及他…

day1 - OpenCV安装与环境配置

本期我们介绍 OpenCV 的背景知识以及如何安装 OpenCV 。 完成本期内容&#xff0c;你可以&#xff1a; 了解 OpenCV 的背景知识掌握安装 OpenCV 及其拓展库 若要运行案例代码&#xff0c;你需要有&#xff1a; 操作系统&#xff1a;Ubuntu 16 以上 或者 Windows10 工具软件…

红米8a,刷机到安卓调用之路

什么是BL锁&#xff1f; https://baijiahao.baidu.com/s?id1614459630284912892&wfrspider&forpc bl锁简单来说&#xff0c;就是厂商为了自己的目的&#xff0c;为了避免刷机&#xff0c;而人为设置的一道障碍&#xff0c;我的第一步就需要等待168小时&#xff0c;经…

车载ECU休眠唤醒-TJA1145

前言 首先&#xff0c;请教大家几个小小问题&#xff0c;你清楚&#xff1a; 什么是TJA1145吗&#xff1f;你知道休眠唤醒控制基本逻辑是怎么样的吗&#xff1f;TJA1145又是如何控制ECU进行休眠唤醒的呢&#xff1f;使用TJA1145时有哪些注意事项呢&#xff1f; 今天&#xff…

Java学习笔记20——内部类

内部类 内部类的访问特点内部类的形式成员内部类局部内部类匿名内部类匿名内部类在开发中使用 内部类是类中的类 内部类的访问特点 1.内部类可以直接访问外部类的成员&#xff0c;包括私有成员 2.外部要访问内部类的成员&#xff0c;必须创建对象 内部类的形式 成员内部类 …

IMX6ULL平台的I2C

IMX6ULL平台的I2C 文章目录 IMX6ULL平台的I2C概述模式和操作 外部信号时钟功能描述I2C系统配置仲裁程序时钟同步信号交换外围总线访问复位中断字节顺序 初始化初始化序列启动的生成传输后软件响应停止的生成重复启动的生成从模式仲裁失败软件限制 I2C内存映射/寄存器定义I2C地址…

Windows操作系统的文件组织结构和计算方法

我是荔园微风&#xff0c;作为一名在IT界整整25年的老兵&#xff0c;今天总结一下Windows操作系统的文件组织结构和计算方法。 这是一块非常实用的知识&#xff0c;感谢大家来看这个帖子。 Windows组织结构就是文件的组织形式&#xff0c;其中&#xff1a; 1.Windows逻辑结构…

FL Studio水果软件好用吗?对电脑硬件环境有哪些需求

如果你打算将来朝着艺术和音乐方向发展&#xff0c;那么学习音乐理论和音乐制作就是一门基础课了。 实践才是检验学习效果途径&#xff0c;在我们日常的练习中&#xff0c;一款功能强大且易学的音乐制作工具是少不了的。在没有实际体验过各个音乐制作工具的功能前&#xff0c;…