用于 ChatGPT 的 FPGA 加速大型语言模型

简介:大型语言模型

        近年来,大型语言模型 (LLM) 彻底改变了自然语言处理领域,使机器能够生成类似人类的文本并进行有意义的对话。这些模型,例如 OpenAI 的 GPT,具有惊人的理解和生成语言的能力。它们可用于广泛的自然语言处理任务,包括文本生成、翻译、摘要、情感分析等。

        大型语言模型通常使用深度学习技术构建,特别是使用 Transformer 架构。Transformer 是一种神经网络模型,擅长捕获序列中的长程依赖关系,因此非常适合语言理解和生成任务。训练大型语言模型涉及将模型暴露给大量文本数据,这些数据通常来自书籍、网站和其他文本资源等来源。该模型学习预测句子中的下一个单词或根据它所看到的上下文填充缺失的单词。通过这个过程,它获得了有关语法、句法甚至某种程度的世界知识的知识。

        与大型语言模型相关的主要挑战之一是其巨大的计算和内存需求。这些模型由数十亿个参数组成,需要强大的硬件和大量的计算资源来有效地训练和部署它们,正如 Nishant Thakur 在 2023 年 的 LinkedIn 文章中所讨论的那样,“ChatGPT 背后令人难以置信的处理能力和成本:构建终极 AI 聊天机器人需要什么?资源有限的组织和研究人员在利用这些模型的全部潜力时经常面临障碍,因为云需要大量的处理或资金。此外,在生成响应时,需要存储以创建适当的标记、单词或单词子部分的上下文长度急剧增加,这对内存和计算资源提出了更高的要求。

        这些计算挑战导致更高的延迟,这使得 LLM 的采用变得更加困难,而且不是实时的,因此不太自然。在这篇文章中,我们将深入探讨大型语言模型遇到的困难,并探索潜在的解决方案,为增强其可用性和可靠性铺平道路。

大型语言模型的加速

        LLM 的构建通常需要一个大型系统来执行模型,该模型会继续增长到仅在 CPU 上执行的成本、功耗或延迟效率不再高的程度。加速器(如 GPU 或 FPGA)可用于显著提高计算功率比,大幅降低系统延迟,并以更小的规模实现更高的计算水平。虽然 GPU 无疑正在成为加速的标准,主要是因为它们的可访问性和易于编程,但 FPGA 架构实际上以比 GPU 低得多的延迟产生了卓越的性能。

         由于 GPU 本质上是warp-locked架构,跨多个内核并行执行超过 32 个 SIMT 线程,因此它们也往往需要对大量数据进行批处理,以尝试抵消warp-locked架构并保持管道满。这相当于更多的延迟和对系统内存的更多需求。同时,FPGA 构建自定义数据路径以同时在多个数据块上执行多个不同的指令,这意味着它可以非常高效地运行,这是实时的,延迟要低得多,同时最大限度地减少外部存储器要求。因此,与竞争架构相比,FPGA 能够显著提高其 TOP 的利用率——这种性能差距只会随着系统扩展到 ChatGPT 大小的系统而扩大。

         Achronix FPGA在吞吐量和延迟方面都优于实现LLM的GPU,因为系统可以扩展到超过10个设备(10000个GPU用于训练GPT8)。如果该模型可以使用INT20精度,那么使用GPT-10B作为参考,Achronix FPGA具有更大的优势,如下表所示。使用 FPGA 是有益的,因为 GPU 的交货时间很长(高端 GPU 超过一年),用户支持最少,并且比 FPGA 贵得多(每个 GPU 的成本可能超过10000 美元)。

图片

图片

将LLM映射到Achronix FPGA加速器

        Achronix Speedster7t FPGA具有独特的架构,非常适合这些类型的模型。首先,它有一个硬件 2D NoC,可以解决数据进出和通过设备的问题。此外,它还使用具有紧密耦合块 RAM 的机器学习处理器 (MLP),以实现计算之间的高效结果重用。最后,与其他FPGA类似,Achronix Speedster7t FPGA具有8组高效GDDR6内存,可提供更高的带宽,能够以4Tbps的速度加载参数。

        由于这些系统需要扩展,因此 FPGA 可以实现各种标准接口,将卡互连在一起,并在它们之间无缝移动数据。Achronix Speedster7t AC7t1500器件具有32个100 Gbps SerDes通道,不需要专有且昂贵的解决方案,如NVLink。

大型语言模型的未来:扩展以增强语言理解和专用领域

        由于这些大型语言模型需要巨大的规模才能以最小的延迟影响执行训练和推理,因此模型的复杂性将继续增长,这将使语言理解、生成甚至预测能力不断提高,而且准确性令人难以置信。虽然今天的许多 GPT 风格的模型都是通用的,但下一个很可能是专门为某些领域(如医学、法律、工程或金融)训练的专用模型。无论如何,在很长一段时间内,这些系统将在那里协助人类专家处理人工智能系统处理的更多日常任务,并提供解决方案建议或帮助创造性任务。

HBX-G500高性能加速卡

        HBX-G500是一款高性能可编程加速卡,为AI、计算、网络等领域,提供多通道的高带宽存储、高性能计算、先进高速接口等解决方案;尤其大模型领域,可单卡运行大模型,且在小的batch size情况下,性能与A100/H100实力相当。

详情点击下面图片。

图片

关于Achronix半导体公司

        Achronix半导体公司是一家总部位于美国加利福尼亚州圣克拉拉市的无晶圆厂半导体公司,提供基于高端FPGA的高性能数据加速解决方案,旨在满足高性能、密集型计算和实时性处理的应用需求。Achronix是唯一一家同时提供高性能高密度的独立FPGA芯片和可授权的eFPGA IP解决方案的供应商。通过面向人工智能、机器学习、网络和数据中心应用的即用型,Achronix 的和产品得到进一步增强。所有的Achronix产品都由完全支持,使客户能够快速开发自己的定制应用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/242711.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Stable Video Diffusion: Scaling Latent Video Diffusion Models to Large Datasets

Stable video diffusion:将潜在视频扩散模型扩展到大型数据集 可以做到:文本-视频的生成、(文本-)图像-视频的生成、通过图像-视频微调进行多视图合成 摘要 我们提出了Stable video diffusion——一种用于高分辨率、最先进的文…

re:Invent 云端历程:Swami Sivasubramanian 博士主题演讲-数据共生与开放

re:Invent 云端历程:Swami Sivasubramanian 博士主题演讲-数据共生与开放 亚马逊云科技 re:Invent 大会简介 亚马逊云科技 re:Invent 是亚马逊云科技为全球云计算社区举办的学习大会。是云计算领域的行业风向标,科技界的全球年度重磅盛会。 亚马逊云科…

Sketch for Mac:实现你的创意绘图梦想的矢量绘图软件

随着数字时代的到来,矢量绘图软件成为了广告设计、插画创作和UI设计等领域中必不可少的工具。在众多矢量绘图软件中,Sketch for Mac(矢量绘图软件)以其强大的功能和简洁的界面脱颖而出,成为了众多设计师的首选。 Sket…

Json数据报文解析-Gson库-JsonObject类-JsonParse类-JsonArray类

一、前言 本文我们将介绍如何解析Json数据,主要通过Gson库中的相关类来实现。 二、详细步骤 首先,我们要拿到一个基础的Json数据,这里将以下面的Json数据作为示例: {"code":"1","msg":"ok&q…

***Cpolar配置外网访问和Dashy

Dashy是一个开源的自托管的导航页配置服务,具有易于使用的可视化编辑器、状态检查、小工具和主题等功能。你可以将自己常用的一些网站聚合起来放在一起,形成自己的导航页。一款功能超强大,颜值爆表的可定制专属导航页工具 结合cpolar内网工具,我们实现无需部署到公网服务器…

大数据机器学习与深度学习——回归模型评估

大数据机器学习与深度学习——回归模型评估 回归模型的性能的评价指标主要有:MAE(平均绝对误差)、MSE(平均平方误差)、RMSE(平方根误差)、R2_score。但是当量纲不同时,RMSE、MAE、MSE难以衡量模型效果好坏,这就需要用到R2_score。 平均绝对…

redis-学习笔记(Jedis 通用命令)

flushAll 清空全部的数据库数据 jedis.flushAll();set & get set 命令 get 命令 运行结果展示 exists 判断该 key 值是否存在 当 redis 中存在该键值对时, 返回 true 如果键值对不存在, 返回 false keys 获取所有的 key 值 参数是模式匹配 *代表匹配任意个字符 _代表匹配一…

2 接口测试实战演示

上一篇:1 接口测试介绍-CSDN博客 拿到开发提供的接口文档后,结合需求文档开始做接口测试用例设计,下面用最常见也最简单的注册功能介绍整个流程。 说明:以演示接口测试流程为主,不对演示功能做详细的测试,…

Jenkins离线安装部署教程简记

前言 在上一篇文章基于Gitee实现Jenkins自动化部署SpringBoot项目中,我们了解了如何完成基于Jenkins实现自动化部署。 对于某些公司服务器来说,是不可以连接外网的,所以笔者专门整理了一篇文章总结一下,如何基于内网直接部署Jen…

TDengine Kafka Connector将 Kafka 中指定 topic 的数据(批量或实时)同步到 TDengine

教程放在这里:TDengine Java Connector,官方文档已经写的很清晰了,不再赘述。 这里记录一下踩坑: 1.报错 java.lang.UnsatisfiedLinkError: no taos in java.library.pathat java.lang.ClassLoader.loadLibrary(ClassLoader.j…

SE考研真题总结(三)

继续更新,今天准备连出两期该系列~ SE考研真题总结(二)https://blog.csdn.net/jsl123x/article/details/134857052?spm1001.2014.3001.5501 目录 一.简答题 二.代码大题 一.简答题 1.工程和科学的区别 科学是关于事物的基本原理和事实的…

102基于matlab的PCA+ELM和PCA+PSO-ELM的费用估计

基于matlab的PCAELM和PCAPSO-ELM的费用估计,输出输出两者的预测误差并进行比较,输出优化后的迭代曲线。数据可更换自己的,程序已调通,可直接运行。 102matlab PCAPSOELM (xiaohongshu.com)

第16章 网络io与io多路复用select/pool/epool

第16.1节 写一个服务端代码 服务端代码 #include <stdio.h> #include <errno.h> #include <string.h> #include <unistd.h> #include <sys/socket.h> #include <netinet/in.h>#include <fcntl.h>int main() {//openint sockfd sock…

大数据技术之Storm的安装与配置

大数据技术之Storm的安装与配置 这篇文章深入研究了大数据技术中实时计算系统 Apache Storm 的安装与配置过程。首先&#xff0c;文章介绍了 Apache Storm 在大数据处理中的重要性&#xff0c;强调其在实时数据处理领域的关键作用。随后&#xff0c;详细阐述了如何在系统中进行…

掌握Web、DNS、FTP、DHCP服务器的配置。掌握简单网络方案的规划和设计

1、Web服务器配置 2、综合设计 配置完后,所有的终端主机都要能够访问外网服务器,并进行测试。(本题可以自行选题,自行设计,但必须包含路由器、服务器(web、dns、DHCP、)、交换机及防火墙)。 3.做好规划并搭建拓扑图: 4.给PC机与服务器配置好IP,网关 5.给每个交换机…

【Spring】02 Bean 的命名

文章目录 1. 定义2. 使用优势3. 如何命名4. 注解驱动5. 最佳实践1&#xff09;使用明确的业务名词2&#xff09;避免缩写和首字母缩略词2&#xff09;不要过度使用别名 结语 在 Spring 框架中&#xff0c;Bean 是应用程序中的主要组件&#xff0c;负责承载和管理应用的核心功能…

bugku -- eval

<?phpinclude "flag.php";$a $_REQUEST[hello];eval( "var_dump($a);");show_source(__FILE__); ?> //这段代码包含了一个PHP脚本。首先&#xff0c;它包含了一个名为"flag.php"的文件。然后&#xff0c;它定义了一个变量$a&#xff0c…

SpringBootWeb入门、HTTP协议、Web服务器-Tomcat

目录 一、SpringBootWeb入门 二、HTTP协议 HTTP-请求协议 HTTP-响应协议 HTTP-协议解析 三、Web服务器-Tomcat 服务器概述 Tomcat 一、SpringBootWeb入门 直接基于SpringFramework进行开发&#xff0c;存在两个问题&#xff1a;配置繁琐、入门难度大 通过springboot就…

MATLAB读写txt文件数据与进制转换

文章目录 前言读txt文件读txt中的十进制数据到MATLAB读txt数据的其他进制数据转为十进制到MATLAB读txt内容到MATLAB 写txt文件总:将MATLAB生成的10进制数据转换成十进制和radix进制写入txt分:将MATLAB中十进制数据以radix进制数据格式写入txt文件分:将MATLAB中十进制数据写入tx…

gRPC-Gateway:高效转换 RESTful 接口 | 开源日报 No.105

grpc-ecosystem/grpc-gateway Stars: 16.4k License: BSD-3-Clause gRPC-Gateway 是一个遵循 gRPC HTTP 规范的 gRPC 到 JSON 代理生成器。它是 Google 协议缓冲编译器 protoc 的插件&#xff0c;可以读取 protobuf 服务定义并生成反向代理服务器&#xff0c;将 RESTful HTTP…