【深度学习】Pytorch 系列教程(一):PyTorch数据结构:1、Tensor(张量)及其维度(Dimensions)、数据类型(Data Types)

文章目录

  • 一、前言
  • 二、实验环境
  • 三、PyTorch数据结构
    • 0、分类
    • 1、Tensor(张量)
      • 1. 维度(Dimensions)
        • 0维(标量)
        • 1维(向量)
        • 2维(矩阵)
        • 3维张量
      • 2. 数据类型(Data Types)

一、前言

ChatGPT:

  PyTorch是一个开源的机器学习框架,广泛应用于深度学习领域。它提供了丰富的工具和库,用于构建和训练各种类型的神经网络模型。下面是PyTorch的一些详细介绍:

  • 动态计算图:PyTorch使用动态计算图的方式进行计算,这意味着在运行时可以动态地定义、修改和调整计算图,使得模型的构建和调试更加灵活和直观。
  • 强大的GPU加速支持:PyTorch充分利用GPU进行计算,可以大幅提升训练和推理的速度。它提供了针对GPU的优化操作和内存管理,使得在GPU上运行模型更加高效。
  • 自动求导:PyTorch内置了自动求导的功能,可以根据定义的计算图自动计算梯度。这简化了反向传播算法的实现,使得训练神经网络模型更加便捷。
  • 大量的预训练模型和模型库:PyTorch生态系统中有许多预训练的模型和模型库可供使用,如TorchVision、TorchText和TorchAudio等,可以方便地加载和使用这些模型,加快模型开发的速度。
  • 高级抽象接口:PyTorch提供了高级抽象接口,如nn.Module和nn.functional,用于快速构建神经网络模型。这些接口封装了常用的神经网络层和函数,简化了模型的定义和训练过程。
  • 支持分布式训练:PyTorch支持在多个GPU和多台机器上进行分布式训练,可以加速训练过程,处理大规模的数据和模型。
      总体而言,PyTorch提供了一个灵活而强大的平台,使得深度学习的研究和开发更加便捷和高效。它的简洁的API和丰富的功能使得用户可以快速实现复杂的神经网络模型,并在各种任务中取得优秀的性能。

二、实验环境

  本系列实验使用如下环境

conda create -n DeepL python==3.11
conda activate DeepL
conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia
pip install matplotlib

  关于配置环境问题,可参考前文的惨痛经历:

Anaconda搭建深度学习环境py 3.7:tensorflow-gpu2.3.0、pytorch1.12.1_gpu版本;(使用conda下载cuda和cudnn);配置环境经验总结

三、PyTorch数据结构

0、分类

  • Tensor(张量):Tensor是PyTorch中最基本的数据结构,类似于多维数组。它可以表示标量、向量、矩阵或任意维度的数组。
  • Tensor的操作:PyTorch提供了丰富的操作函数,用于对Tensor进行各种操作,如数学运算、统计计算、张量变形、索引和切片等。这些操作函数能够高效地利用GPU进行并行计算,加速模型训练过程。
  • Variable(变量):Variable是对Tensor的封装,用于自动求导。在PyTorch中,Variable会自动跟踪和记录对其进行的操作,从而构建计算图并支持自动求导。在PyTorch 0.4.0及以后的版本中,Variable被废弃,可以直接使用Tensor来进行自动求导。
  • Dataset(数据集):Dataset是一个抽象类,用于表示数据集。通过继承Dataset类,可以自定义数据集,并实现数据加载、预处理和获取样本等功能。PyTorch还提供了一些内置的数据集类,如MNIST、CIFAR-10等,用于方便地加载常用的数据集。
  • DataLoader(数据加载器:DataLoader用于将Dataset中的数据按批次加载,并提供多线程和多进程的数据预读功能。它可以高效地加载大规模的数据集,并支持数据的随机打乱、并行加载和数据增强等操作。
  • Module(模块):Module是PyTorch中用于构建模型的基类。通过继承Module类,可以定义自己的模型,并实现前向传播和反向传播等方法。Module提供了参数管理、模型保存和加载等功能,方便模型的训练和部署。

1、Tensor(张量)

  Tensor(张量)是PyTorch中用于表示多维数据的主要数据结构,类似于多维数组,可以存储和操作数字数据。

1. 维度(Dimensions)

  Tensor(张量)的维度(Dimensions)是指张量的轴数或阶数。在PyTorch中,可以使用size()方法获取张量的维度信息,使用dim()方法获取张量的轴数。
在这里插入图片描述

0维(标量)
import torch

# 创建0维张量(标量)
scalar = torch.tensor(5)
print("0维张量(标量):")
print(scalar)
print("维度信息:", scalar.size())
print("轴数:", scalar.dim())

在这里插入图片描述

1维(向量)
import torch

# 创建1维张量(向量)
vector = torch.tensor([1, 2, 3, 4, 5])
print("1维张量(向量):")
print(vector)
print("维度信息:", vector.size())
print("轴数:", vector.dim())

在这里插入图片描述

2维(矩阵)
import torch

# 创建2维张量(矩阵)
matrix = torch.tensor([[1, 2, 3], [4, 5, 6]])
print("2维张量(矩阵):")
print(matrix)
print("维度信息:", matrix.size())
print("轴数:", matrix.dim())

在这里插入图片描述

3维张量
import torch

# 创建3维张量
tensor_3d = torch.tensor([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])
print("维张量:")
print(tensor_3d)
print("维度信息:", tensor_3d.size())
print("轴数:", tensor_3d.dim())

在这里插入图片描述

  在上面的代码中,创建了一个3维张量tensor,它有2个维度为2x3的矩阵。通过调用size()方法,我们可以获取张量的维度信息,返回的是一个torch.Size对象,它是一个元组(tuple)形式的数据结构,表示各个维度的大小。在这个例子中,tensor的维度信息是[2, 2, 3],表示有2个矩阵,每个矩阵的大小为2x3。通过调用dim()方法,我们可以得到张量的轴数,这里是3。

2. 数据类型(Data Types)

  PyTorch中的张量可以具有不同的数据类型:

  • torch.float32或torch.float:32位浮点数张量。
  • torch.float64或torch.double:64位浮点数张量。
  • torch.float16或torch.half:16位浮点数张量。
  • torch.int8:8位整数张量。
  • torch.int16或torch.short:16位整数张量。
  • torch.int32或torch.int:32位整数张量。
  • torch.int64或torch.long:64位整数张量。
  • torch.bool:布尔张量,存储True或False。

  在创建张量时,可以通过指定dtype参数来设置所需的数据类型。例如,要创建一个64位浮点数张量,可以使用以下代码:

import torch

tensor = torch.tensor([1, 2, 3], dtype=torch.float64)
print(tensor)
print(tensor.dtype)

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/242251.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

用AI画个女朋友回家过年,1行Python代码,免费实现

#这才是真功夫# 大家好,这里是程序员晚枫,全网同名。 马上过年了,还是单身的举个爪! 今年GPT系列的产品非常火爆,今天给大家分享一下,如何免费用AI代码画1个女朋友。👇 直接上代码 大家学习 或 …

STM32-TIM定时器输出比较

目录 一、输出比较简介 二、PWM简介 三、输出比较通道(通用) 四、输出比较通道(高级) 五、输出比较模式 六、PWM基本结构 七、PWM参数计算 八、外设介绍 8.1 舵机 8.2 直流电机及驱动 九、开发步骤 十、输出比较库函数…

容器技术与操作系统

文章目录 容器技术 vs 虚拟机操作系统容器 Docker与操作系统 容器技术 vs 虚拟机 操作系统 操作系统是一个很重而且很笨的程序,简称笨重,有多笨重呢? 操作系统运行起来是需要占用很多资源的,大家对此肯定深有体会,刚…

vue.js单页面 如何遇到404页面如何正确返回状态码404

客户端配置(Vue.js) 在客户端,你可以在 Vue 路由器(vue-router)中设置一个捕获所有未定义路由的规则,显示一个 404 组件,但请注意这不会改变 HTTP 状态码。 import Vue from vue; import Rout…

【源码复现】《Towards Deeper Graph Neural Networks》

目录 1、论文简介2、论文核心介绍2.1、基本概述2.2、模型介绍 3、源码复现3.1、torch复现3.2、DGL复现 1、论文简介 论文题目——《Towards Deeper Graph Neural Networks》论文作者——Meng Liu, Hongyang Gao & Shuiwang Ji论文地址——Towards Deeper Graph Neural Net…

uni-app 一些实用的页面模板

时间倒计时 <!-- 时间倒计时 --> <template><view class"container"><view class"flex-row time-box"><view class"time-item">{{ laveTimeList[0] }}</view><text>天</text><view class&qu…

Kubernetes实战(十四)-k8s集群扩容master节点

1 Master 高可用架构 Kubernetes 作为容器集群系统&#xff0c;通过健康检查 重启策略实现了 Pod 故障自我修复能力&#xff0c;通过调度算法实现将 Pod 分布式部署&#xff0c;并保持预期副本数&#xff0c;根据 Node 失效状态自动在其他 Node 拉起 Pod&#xff0c;实现了应…

【初阶C++】入门(超详解)

C入门 前言1. C关键字(C98)2. 命名空间2.1 命名空间定义2.2 命名空间使用2.3嵌套命名空间 3. C输入&输出4. 缺省参数4.1 缺省参数概念4.2 缺省参数分类 5. 函数重载5.1 函数重载概念5.2 C支持函数重载的原理--名字修饰(name Mangling) 6. 引用6.1 引用概念6.2 引用特性6.3 …

最新版ES8的client API操作 Elasticsearch Java API client 8.0

作者&#xff1a;ChenZhen 本人不常看网站消息&#xff0c;有问题通过下面的方式联系&#xff1a; 邮箱&#xff1a;1583296383qq.comvx: ChenZhen_7 我的个人博客地址&#xff1a;https://www.chenzhen.space/&#x1f310; 版权&#xff1a;本文为博主的原创文章&#xff…

多丽特膳:个性化的调减饮品,让你的蜕变之路更轻松

不同的人有不同的体型和健康状态&#xff0c;在我们的生活中存在九种体质&#xff0c;它们分别是平和质、气虚质、阳虚质、阴虚质、痰湿质、湿热质、血瘀质、气郁质、特禀质。体质是指人类个体在形态结构和生理功能方面的相对稳定的特征&#xff0c;它反映了人类个体之间的差异…

【源码解析】flink sql执行源码概述:flink sql执行过程中有哪些阶段,这些阶段的源码大概位置在哪里

文章目录 一. sql执行流程源码分析1. Sql语句解析成语法树阶段&#xff08;SQL - > SqlNode&#xff09;2. SqlNode 验证&#xff08;SqlNode – >Operation&#xff09;3. 语义分析&#xff08;Operation - > RelNode&#xff09;4. 优化阶段&#xff08;RelNode - &…

【活动回顾】ABeam News | 兰州大学外国语学院回访ABeam 旗下德硕管理咨询(上海),持续推进远景合作

访企拓岗深入调研 持续推进远景合作 继11月上旬ABeam旗下艾宾信息技术开发&#xff08;西安&#xff09;团队一行拜访兰州大学并举行隆重的校企签约仪式后&#xff0c;近日兰州大学一行领导也如约莅临德硕管理咨询&#xff08;上海&#xff09;有限公司开展拓岗调研。 深化…

基于FPGA的视频接口之高速IO(SATA)

简介 本章节是对于高速IO接口应用的一个扩展,目前扩展为SATA(SSD硬盘,机械硬盘不能使用)。通俗易懂的讲,即把SSD硬盘当做大型的Nand Flash来处理,不格式化硬盘,直接以地址和数据的格式,在SATA盘中写入数据,该数据不能被Window和linux直接识别,需单独编写App来查看SSD…

Python 小程序之PDF文档加解密

PDF文档的加密和解密 文章目录 PDF文档的加密和解密前言一、总体构思二、使用到的库三、PDF文档的加密1.用户输入模块2.打开并读取文档数据3.遍历保存数据到新文档4.新文档进行加密5.新文档命名生成路径6.保存新加密的文档 四、PDF文档的解密1.用户输入模块2.前提准备2.文件解密…

【C++11】右值引用与移动语义

一.左值与右值 左值&#xff1a;可以取地址的表示数据的表达式&#xff0c;左值可以出现在赋值符号左边 右值&#xff1a;不能取地址的表示数据的表达式&#xff0c;右值不能出现在赋值符号左边 int fun() {return 0; } int main() {int a 0;//a->左值const int b 1;//b-&…

粒子群优化算法的实践 - 多个约束条件

粒子群优化算法的实践 - 多个约束条件 flyfish 粒子群优化算法的实践 - 目标函数的可视化 粒子群优化算法的实践 - 向量减法 在粒子群优化算法的代码实践中 代码写法是 #非线性约束 (x[0] - 1) ** 2 (x[1] - 1) ** 2 - 1<0 constraint_ueq (lambda x: (x[0] - 1) ** 2…

【期末考复习向】transformer的运作机制

1.transformer的encoder运作 transformer的encoder部分包括了输入和处理2大部分。首先是输入部分inputs&#xff0c;这里初始的inputs是采用独热向量进行表示的&#xff0c;随后经过word2vec等操作把独热向量&#xff08;采用独热向量的好处就是可向量是正交的&#xff0c;可以…

Centos7部署SVN

文章目录 &#xff08;1&#xff09;SVN概述&#xff08;2&#xff09;SVN与Samba共享&#xff08;3&#xff09;安装SVN&#xff08;4&#xff09;SVN搭建实例&#xff08;5&#xff09;pc连接svn服务器&#xff08;6&#xff09;svn图标所代表含义 &#xff08;1&#xff09;…

【大数据】详解 AVRO 格式

详解 AVRO 格式 1.Avro 介绍2.schema2.1 原始类型2.2 复杂类型2.2.1 Records2.2.2 Enums2.2.3 Arrays2.2.4 Maps2.2.5 Unions2.2.6 Fixed 3.Avro 的文件存储格式3.1 数据编码3.1.1 原始类型3.1.2 复杂类型 3.2 存储格式3.3 存储格式 4.小结 1.Avro 介绍 Apache Avro 是 Hadoop…

【rabbitMQ】声明队列和交换机

上一篇&#xff1a;springboot整合rabbitMQ模拟简单收发消息 https://blog.csdn.net/m0_67930426/article/details/134904766?spm1001.2014.3001.5501 相关配置环境参考上篇 springAMQP提供了几个类用来声明声明队列&#xff0c;交换机及其绑定关系 声明队列&#xff0c;…