C++STL的list模拟实现

文章目录

    • 前言
  • list实现
    • push_back
    • 迭代器(重点)
      • 普通迭代器
      • const迭代器
    • insert
    • erase
    • 析构函数
    • 构造函数
    • 拷贝构造
    • 赋值
  • vector和list的区别

前言

要实现STL的list, 首先我们还得看一下list的源码。
在这里插入图片描述
我们看到这么一个东西,我们知道C++兼容C,可以用struct来创建一个类。但是我们习惯用class。

那什么时候会用struct呢?
这个类所有成员都想开放出去,比如结点的指针,它一般开放出来。所以我们用struct.。

继续看源码比较重要的东西,成员变量的结构。
在这里插入图片描述

这个东西是啥?
在这里插入图片描述
在这里插入图片描述
这样就很清晰了。

知道它是一个结点的指针,下一步 应该看什么?
成员看了,就看接口。
看接口第一步,看构造函数,看构造函数就知道它怎样初始化,就知道它的初始结构是怎样的。
初始结构摸清楚了,就对它的大概形态摸清楚了。

接着看它的核心方法,当然我们本身对list有一定的了解。
头插头删,尾插尾删就是核心方法。

看它的构造函数
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
后面就先不接着往下看了。

list实现

先把最基本的东西写出来。

namespace but
{
	template<class T>
	struct list_node
	{
		list_node<T>* _next;
		list_node<T>* _prev;
		T _data;
	};

	template<class T>
	class list
	{
		list()
		{
			_head = new list_node;
			_head->_next = _head;
			_head->_prev = _head;
		}
	private:
		list_node* _head;
	};
}

push_back

在这里插入图片描述
在这里插入图片描述

为什么报错?
在这里插入图片描述
前面我们说过像构造函数,参数可以不加模板参数,但是声明类型还是得加上。

list_node是类名,list_node才是类型。

更新一下前面的代码。

namespace but
{
	template<class T>
	struct list_node
	{
		list_node<T>* _next;
		list_node<T>* _prev;
		T _data;
	};

	template<class T>
	class list
	{
		typedef list_node<T> node;
		list()
		{
			_head = newnode;
			_head->_next = _head;
			_head->_prev = _head;
		}
	private:
		node _head;
	};
}

push_back怎么搞?
找到尾,然后new 一个新节点,最后链接。
在这里插入图片描述

void push_back(const T& x)
{
	node* tail = _head->_prev;
	node* new_node = new node(x);

	tail->_next = new_node;
	new_node->_prev = tail;
	new_node->_next = _head;
	_head->_prev = new_node;
}

写个list_node的构造函数。

list_node(const T& x )
	:_next(nullptr)
	, _prev(nullptr)
	, _data(x)
{}

紧接着报错。
在这里插入图片描述
没有默认构造怎么办?
最好还是提供一个全缺省的构造函数。

//list_node(const T& x =0)不能给0
list_node(const T& x =T())
	:_next(nullptr)
	, _prev(nullptr)
	, _data(x)

迭代器(重点)

普通迭代器

首先我们肯定会遇到一个问题,之前的vector的数据是连续存放的,而链表每个结点是不连续的。
++不能指向下一个结点。
在这里插入图片描述
怎么解决这个问题?
能不能给node提供一个重载,不行,因为是node*而不是node;

我们可以看一下STL的源码。
在这里插入图片描述
++还可以解引用
在这里插入图片描述

现在我们根据自己的理解,写一个简单的迭代器,让它运行起来。
在这里插入图片描述

接着我们再在list这个对象里写上begin()和end()就可以正常访问了。
在这里插入图片描述

最后测试一下
在这里插入图片描述
在这里插入图片描述
大家仔细看,数组和链表的结构千差万别,但是用起来是如此的相似。
这源自于封装,屏蔽掉了我们看不到的细节。

今天最重要的并不是链表的实现,迭代器的实现才是最最重要的。

总结一下,node*不支持解引用,不支持++,但是我可以用一个自定义类型对你封装,然后去重载运算符,我可以控制我想要的解引用的行为,想要的++的行为,这是自定义类型达到的意义。

在这里插入图片描述
注意看这里有个隐藏的点,发生了拷贝构造,我们自己没有写拷贝构造,编译器自动生成的不会 出问题吗?
在这里插入图片描述
程序运行没有报错,什么原因呢?这里没有写析构函数,不需要释放结点。

为什么不需要释放结点?
虽然有结点的指针,但是这结点的指针并不属于迭代器。
结点的指针给迭代器,只是为了遍历链表,++,解引用,修改链表。
释放是链表的事情,链表的析构函数会释放,不需要你释放。
这个结点不是迭代器new出来的,你只有使用权,没有归属权。

template<class T, class Ref, class Ptr>
struct __list_iterator
{
	typedef list_node<T> node;
	typedef __list_iterator<T, Ref, Ptr> self;
	node* _node;

	__list_iterator(node* n)
		:_node(n)
	{}

	Ref operator*()
	{
		return _node->_data;
	}

	Ptr operator->()
	{
		return &_node->_data;
	}

	self& operator++()
	{
		_node = _node->_next;

		return *this;
	}

	self operator++(int)
	{
		self tmp(*this);
		_node = _node->_next;

		return tmp;
	}

	self& operator--()
	{
		_node = _node->_prev;

		return *this;
	}

	self operator--(int)
	{
		self tmp(*this);
		_node = _node->_prev;

		return tmp;
	}

	bool operator!=(const self& s)
	{
		return _node != s._node;
	}

	bool operator==(const self& s)
	{
		return _node == s._node;
	}
};

const迭代器

假设我们传了const的链表,编译不通过。
在这里插入图片描述
为什么编译不通过?
还是我们之前讲了很多次的权限放大。
我们提供一个支持const对象的迭代器就可以了。

但是看这里,为什么const对象还可以调用构造迭代器?
在这里插入图片描述
首先const修饰的*this具体是_head;所以_head不能被改变,而不是_head指向的内容不能被改变。
这个结点指针本身不能改变,但是它可以拷贝给别人。

但是这样写不符合我们的预期,可以修改了。为什么能修改呢?就是因为它构造出了普通迭代器。但是普通迭代器是不可写的。

我们要写一个const迭代器

首先我们先想一下普通迭代器和const迭代器的区别是什么?

先看一个问题,能不能这样定义const迭代器?
在这里插入图片描述
绝对不可以。
首先迭代器对标的是指针。
在这里插入图片描述

写成上面这样,是保护迭代器本身不能修改,而我们想要的是,迭代器指向的内容不能修改,也就是 const T*;

那怎么实现呢,我们要实现的内容不能修改。
我们可以像之前实现普通迭代器一样,再写一个const迭代器对象,只是名字改一下,然后解引用的时候不能修改。
在这里插入图片描述

在这里插入图片描述

两个对象除了那个返回值不一样,其他都一样怎么简化一下呢?
控制返回值不一样就可以了。增加一个模板参数。
还能这么玩。
在这里插入图片描述
在这里插入图片描述

// 1、迭代器要么就是原生指针
// 2、迭代器要么就是自定义类型对原生指针的封装,模拟指针的行为
template<class T, class Ref, class Ptr>
struct __list_iterator
{
	typedef list_node<T> node;
	typedef __list_iterator<T, Ref, Ptr> self;
	node* _node;

	__list_iterator(node* n)
		:_node(n)
	{}

	Ref operator*()
	{
		return _node->_data;
	}

	Ptr operator->()
	{
		return &_node->_data;
	}

	self& operator++()
	{
		_node = _node->_next;

		return *this;
	}

	self operator++(int)
	{
		self tmp(*this);
		_node = _node->_next;

		return tmp;
	}

	self& operator--()
	{
		_node = _node->_prev;

		return *this;
	}

	self operator--(int)
	{
		self tmp(*this);
		_node = _node->_prev;

		return tmp;
	}

	bool operator!=(const self& s)
	{
		return _node != s._node;
	}

	bool operator==(const self& s)
	{
		return _node == s._node;
	}
	};

我们看一下库里面的模板参数
在这里插入图片描述

为什么还有一个Ptr呢?
它还提供了一个重载operator->;
在这里插入图片描述
什么时候会用->?
大家注意,上面的迭代器模拟的是int*;
自定义的类型是不是得用->
在这里插入图片描述
在这里插入图片描述
大家看报错了。报的啥错。
it返回的是AA,AA没有返回流插入。

第一种方式可以使用重载一个流插入,这里因为AA里面的成员都不是私有,所以我们可以这样。
在这里插入图片描述
这样写很别扭我们可以这样。
在这里插入图片描述
我们可以在迭代器里面重载一个->
在这里插入图片描述

总感觉有点怪怪,其实是这样的。
在这里插入图片描述
在这里插入图片描述

好,接下来const的迭代器的->重载需要返回const T*,所以这里再增加一个模板参数。

insert

链表其实已经实现的差不多了,我们现在自己再把功能完善一下。其实我们没必要实现头插头删尾插尾删,我们只需要实现insert.和 erase, insert和erase实现了,其他都可以实现。
在这里插入图片描述

void insert(iterator pos, const T& x)
{
		node* cur = pos._node;
		node* prev = cur->_prev;

		node* new_node = new node(x);

		prev->_next = new_node;
		new_node->_prev = prev;
		new_node->_next = cur;
		cur->_prev = new_node;
}

链表的insert会不会导致迭代器失效?
不会
因为pos始终指向这个结点,并且这个位置关系也不会变。

接着我们其实自己不用写push_back和push_front了

void push_back(const T& x)
{
	insert(end(), x);
}
void push_front(const T& x)
{
	insert(begin(), x);
}

erase

在这里插入图片描述

void erase(iterator pos)
{
//哨兵卫头节点不能删除
		assert(pos != end());

		node* prev = pos._node->_prev;
		node* next = pos._node->_next;

		prev->_next = next;
		next->_prev = prev;
		delete pos._node;
}

链表的erase会不会导致迭代器失效?
铁铁的失效,迭代器指向的结点的指针都被干掉了

void pop_back()
{
	erase(--end());
}

void pop_front()
{
	erase(begin());
}

在这里插入图片描述
大家看下面这两行代码的差异在哪里?
本质上没有差异。它们的差异点在于pnode是一个内置类型,it是一个自定义类型。

从物理空间上看,它们的代码是一摸一样的,都是4个字节,并且都是同一个地址。
在这里插入图片描述
但是这两个的行为天差地别

在这里插入图片描述
这就是C语言和C++的差异。

析构函数

clear可以帮我们把数据清掉,但是它不清头结点。

void clear()
{
	iterator it = begin();
	while (it != end())
	{
		it = erase(it);//防止迭代器失效
		erase(it++);
	}
}

在这里插入图片描述
这样写行不行?
可以。it不是失效了吗?为什么还可以it++; 我们之前说过it失效有个现象就是野指针,那这里怎么没事呢?
这就是后置++的价值,它会返回++之前的值。
在这里插入图片描述
也就是说erase的并不是it,而是返回的迭代器。

析构和clear的区别就是头节点要不要清楚掉,析构是彻底不用了。

~list()
{
	clear();
	delete _head;
	_head = nullptr;
}

void clear()
{
	iterator it = begin();
	while (it != end())
	{
		//it = erase(it);
		erase(it++);
	}
}

构造函数

我们再提供一下迭代器区间的构造。
在这里插入图片描述
这样写可不可以,不可以,你要push_back,你得有一个哨兵卫的头节点。

void empty_init()
{
	_head = new node;
	_head->_next = _head;
	_head->_prev = _head;
}

template <class Iterator>
list(Iterator first, Iterator last)
{
	empty_init();

	while (first != last)
	{
		push_back(*first);
		++first;
	}
}

const对象可不可以调用构造函数。可以。
在这里插入图片描述

拷贝构造

传统写法
在这里插入图片描述

现代写法

void swap(list<T>& tmp)
{
	std::swap(_head, tmp._head);
}

list(const list<T>& lt)
{
	empty_init();

	list<T> tmp(lt.begin(), lt.end());
	swap(tmp);
}

在这里插入图片描述
this跟tmp交换,但是this是随机值,会报错,所以要初始化。

赋值

在这里插入图片描述
为什么不用引用传参?
用引用会导致一个非常恶劣的后果。
大家看,传引用的话,lt就是lt3,交换就变成lt1和lt3的交换了。


// lt1 = lt3
list<T>& operator=(list<T> lt)
{
	swap(lt);
	return *this;
}

vector和list的区别

其实就是顺序表和链表的区别。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/240627.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Quartus II + Modelsim 脚本仿真

软件版本&#xff1a;Intel Quartus Prime Design Suite: 23.2 方式参考附件Intel 官方文档&#xff1a;Questa*-Intel FPGA Edition Quick-Start: Intel Quartus Prime Pro Edition 第1步&#xff0c;创建一个ram ip&#xff0c;并形成一个例化的top层ip 第2步&#xff0c;自…

独立完成软件的功能的测试(2)

独立完成软件的功能的测试&#xff08;2&#xff09; &#xff08;12.13&#xff09; 1. 对穷举场景设计测试点&#xff08;等价类划分法&#xff09; 等价类划分法的概念&#xff1a; 说明&#xff1a;数据有共同特征&#xff0c;成功失败分类&#xff1a; 有效&#xff1a…

FPGA使用乘法的方式

FPGA使用乘法的方式 方法一:直接使用乘法符“*” 源代码 module multiply(input [7:0] a,input [7:0] b,output wire [15:0] result);(*use_dsp48 = "yes"*) wire [15:0] result;assign result = a*b; endmodule仿真代码 module multiply_tb();reg [7:0] a; re…

大象慧云:从设立分部到迁移总部 与贵阳贵安共筑税务数字化未来

近年来&#xff0c;贵阳贵安着力提升政务服务水平&#xff0c;通过擦亮“贵人服务”品牌&#xff0c;持续优化营商环境。在这样的环境下&#xff0c;再加上“大数据基因”&#xff0c;对于希望在大数据领域大展拳脚的企业来说&#xff0c;贵阳贵安无疑成为了一个极具吸引力的选…

MySQL笔记-第11章_数据处理之增删改

视频链接&#xff1a;【MySQL数据库入门到大牛&#xff0c;mysql安装到优化&#xff0c;百科全书级&#xff0c;全网天花板】 文章目录 第11章_数据处理之增删改1. 插入数据1.1 实际问题1.2 方式1&#xff1a;VALUES的方式添加1.3 方式2&#xff1a;将查询结果插入到表中 2. 更…

C语言—每日选择题—Day46

第一题 1. 下列程序段的输出结果是&#xff08;&#xff09; #include <stdio.h> int main() {int x 1,a 0,b 0;switch(x) {case 0: b;case 1: a;case 2: a;b;}printf("a%d,b%d\n", a, b);return 0; } A&#xff1a;a2,b1 B&#xff1a;a1,b1 C&#xf…

CGAL的3D Alpha Wrapping

1、介绍 几何建模和处理中的各种任务都需要将三维对象表示为有效的曲面网格&#xff0c;其中“有效”指的是不透水、无交叉、可定向和2流形的网格。这样的表示提供了内部/外部和测地线邻域的定义良好的概念。 3D数据通常是通过测量和重建获得的&#xff0c;由人类设计&#xff…

深入理解网络 I/O 多路复用:Epoll

&#x1f52d; 嗨&#xff0c;您好 &#x1f44b; 我是 vnjohn&#xff0c;在互联网企业担任 Java 开发&#xff0c;CSDN 优质创作者 &#x1f4d6; 推荐专栏&#xff1a;Spring、MySQL、Nacos、Java&#xff0c;后续其他专栏会持续优化更新迭代 &#x1f332;文章所在专栏&…

【FPGA】综合设计练习题目

前言 这是作者这学期上的数电实验期末大作业的题目&#xff0c;综合性还是十分强的&#xff0c;根据组号作者是需要做“4、篮球比赛计分器”&#xff0c;相关代码会在之后一篇发出来&#xff0c;这篇文章用于记录练习题目&#xff0c;说不定以后有兴趣或者有时间了回来做做。 …

随机拆分文件夹划分训练验证集

import os from shutil import copy, rmtree import randomdef mk_file(file_path: str):if os

智能优化算法应用:基于鸟群算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于鸟群算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于鸟群算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.鸟群算法4.实验参数设定5.算法结果6.参考文献7.MA…

数据中心到底是如何工作的?

数字时代的数据中心&#xff0c;就如同网络世界的心脏&#xff0c;它的鼓动关系到整个网络生态的运转。但这个复杂而庞大的数据枢纽背后隐藏着怎样的精密机制&#xff0c;是许多人颇感好奇的谜。 数字时代的数据中心&#xff0c;就如同网络世界的心脏&#xff0c;它的鼓动关系…

【CSP】202303-1_田地丈量Python实现

文章目录 [toc]试题编号试题名称时间限制内存限制问题描述输入格式输出格式样例输入样例输出样例解释子任务Python实现 试题编号 202303-1 试题名称 田地丈量 时间限制 1.0s 内存限制 512.0MB 问题描述 西西艾弗岛上散落着 n n n块田地&#xff0c;每块田地可视为平面直角坐标…

UDP群聊

客户端 import java.awt.BorderLayout; import java.awt.Dimension; import java.awt.EventQueue; import java.awt.event.ActionEvent; import java.awt.event.ActionListener; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader…

PyTorch深度学习实战(25)——自编码器

PyTorch深度学习实战&#xff08;25&#xff09;——自编码器 0. 前言1. 自编码器2. 使用 PyTorch 实现自编码器小结系列链接 0. 前言 自编码器 (Autoencoder) 是一种无监督学习的神经网络模型&#xff0c;用于数据的特征提取和降维&#xff0c;它由一个编码器 (Encoder) 和一…

招不到人?用C语言采集系统批量采集简历

虽说现在大环境不太好&#xff0c;很多人面临着失业再就业风险&#xff0c;包括企业则面临着招人人&#xff0c;找对口专业难得问题。想要找到适合自己公司的人员&#xff0c;还要得通过爬虫获取筛选简历才能从茫茫人海中找到公司得力干将。废话不多说&#xff0c;直接开整。 1…

Github仓库远程操作——简单版

Github远程操作 github仓库简单的远程操作&#xff0c;更多复杂的功能请参考github官方文档 标题 Github远程操作添加公钥到githubGithub仓库远程操作 远程操作之前&#xff0c;先添加本地的公钥到github 添加公钥到github 创建本地ssh公私钥&#xff1a;使用powershell或者gi…

(1)(1.7) HOTT telemetry

文章目录 前言 1 布线和设置 2 参数说明 前言 Plane-4.0.0&#xff08;及更高版本&#xff09;、Copter-4.0.4&#xff08;及更高版本&#xff09;和 Rover-4.1.0&#xff08;及更高版本&#xff09;支持 Graupner HOTT 遥测技术。 1 布线和设置 与自动驾驶仪的连接可通过…

Jenkins项目部署CICD

目录 什么是CI/CD 常用 CI/CD 工具 主要步骤 1、点击新建任务 2、构建自由风格项目 3、填写内容 ①、General 1&#xff09;描述 2&#xff09;丢弃旧的构建 ②、源码管理 1&#xff09;Repository URL 2&#xff09;Credentials 3&#xff09;Branches to build…

破局:国内市场确实存在“消费升级”和“消费降级”,3.0全新新零售商业模式

国内市场确实存在“消费升级”和“消费降级”两个趋势&#xff0c;这是由于不同消费者群体的需求和购买力存在差异。消费升级主要发生在高端市场&#xff0c;消费者愿意为高品质、高价值、高价格的商品和服务付出更多。而消费降级则主要发生在中低端市场&#xff0c;消费者更加…