YOLOv5白皮书-第Y4周:common.py文件解读

目录

  • 0.导入需要的包和基本配置
  • 1.基本组件
    • 1.1 autopad
    • 1.2 Conv
    • 1.3 Focus
    • 1.4 Bottleneck
    • 1.5 BottleneckCSP
    • 1.6 C3
    • 1.7 SPP
    • 1.8 Concat
    • 1.9 Contract、Expand
  • 2.重要类
    • 2.1 非极大值抑制(NMS)
    • 2.2 AutoShape
    • 2.3 Detections
    • 2.4 Classify

🍨 本文为🔗365天深度学习训练营 中的学习记录博客
🍖 原作者:K同学啊|接辅导、项目定制

该文件是实现YOLO算法中各个模块的地方,如果我们需要修改某一模块(例如C3),那么就需要修改这个文件中对应模块的的定义。这里我先围绕代码,带大家过一遍各个模块的 定义,详细介绍我将在后续的教案中逐步展开。由于YOLOV5版本问题,同一个模块你可能会看到不同的版本,这都是正常的,以官网为主即可。
本周任务:将yolov5s网络模型中的C3模块按照下图方式修改,并跑通yolov5。
任务提示:仅需修改・/models/common.yaml文件。
在这里插入图片描述
在这里插入图片描述

0.导入需要的包和基本配置

import ast
import contextlib
import json
import math                # 数学函数模块
import platform
import warnings
import zipfile
from collections import OrderedDict, namedtuple
from copy import copy      # 数据拷贝模块,分浅拷贝和深拷贝
from pathlib import Path   # Path将str转换为Path对象,使字符串路径易于操作的模块
from urllib.parse import urlparse

import cv2
import numpy as np          # numpy数组操作模块
import pandas as pd         # pandas数组操作模块
import requests             # Python的HTTP客户端库
import torch                # pytorch深度学习框架
import torch.nn as nn       # 专门为神经网络设计的模块化接口
from IPython.display import display
from PIL import Image       # 图像基础操作模块
from torch.cuda import amp  # 混合精度训练模块

from utils import TryExcept
from utils.dataloaders import exif_transpose, letterbox
from utils.general import (LOGGER, ROOT, Profile, check_requirements, check_suffix, check_version, colorstr,
                           increment_path, is_notebook, make_divisible, non_max_suppression, scale_boxes, xywh2xyxy,
                           xyxy2xywh, yaml_load)
from utils.plots import Annotator, colors, save_one_box
from utils.torch_utils import copy_attr, smart_inference_mode

1.基本组件

1.1 autopad

这个模块可以根据输入的卷积核计算卷积模块所需的pad值。将会用于下面会讲到的 Conv 函数和 Classify 函数中。

def autopad(k, p=None, d=1):  # kernel, padding, dilation
    # Pad to 'same' shape outputs
    if d > 1:
        k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k]  # actual kernel-size
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
    return p

1.2 Conv

这个函数是整个网络中最基础的组件,由 卷积层 + BN层 + 激活函数 组成,具体结构如下
在这里插入图片描述
另外这个类中还有一个特殊函数 forward_fuse ,这是一个前向加速推理模块,在前向传播过程中,通过融合 Conv + BN 层,达到加速推理的作用,一般用于测试或验证阶段。

class Conv(nn.Module):
    # Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)
    default_act = nn.SiLU()  # default activation

    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
        ''' 在Focus、Bottleneck、BottleneckCSP、C3、SPP、DWConv、TransformerBlock等模块中调用
        Standard convolution : conv + BN + act
        :params c1: 输入的channel值
        :params c2: 输出的channel值
        :params k: 卷积的kernel_size
        :params s: 卷积的stride
        :params p: 卷积的padding,默认是None,可以通过autopad自行计算需要的padding值
        :params g: 卷积的groups数,1就是普通的卷积,>1就是深度可分离卷积
        :params act: 激活函数类型,True就是SiLU()/Swish,False就是不使用激活函数,类型是nn.Module就使用传进来的激活函数类型
        '''
        super().__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
        self.bn = nn.BatchNorm2d(c2)
        self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()

    def forward(self, x):
        return self.act(self.bn(self.conv(x)))

    def forward_fuse(self, x):
        ''' 用于Model类的fuse函数
        融合 Conv + BN 加速推理,一般用于测试/验证阶段
        '''
        return self.act(self.conv(x))


1.3 Focus

为了减少浮点数和提高速度,而不是增加featuremap的,本质就是将图像进行切片,类似于下采样取值,将原图像的宽高信息切分,聚合到channel通道中。结构如下所示:
在这里插入图片描述

class Focus(nn.Module):
    # Focus wh information into c-space 把宽度w和高度h的信息整合到c空间中
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):  # ch_in, ch_out, kernel, stride, padding, groups
        ''' 在yolo.py的parse_model函数中被调用
        理论:从高分辨率图像中,周期性的抽出像素点重构到低分辨率图像中,即将图像相邻的四个位置进行堆叠,
        聚集wh维度信息到c通道中,提高每个点的感受野,并减少原始信息的丢失,该模块的设计主要是减少计算量加快速度。
        先做4个slice,再concat,最后在做Conv
        slice后 (b1,c1,w,h) -> 分成4个slice,每个slice(b,c1,w/2,h/2)
        concat(dim=1)后 4个slice(b,c1,w/2,h/2) -> (b,4c1,w/2,h/2)
        conv后 (b,4c1,w/2,h/2) -> (b,c2,w/2,h/2)
        :params c1: slice后的channel
        :params c2: Focus最终输出的channel
        :params k: 最后卷积的kernel
        :params s: 最后卷积的stride
        :params p: 最后卷积的padding
        :params g: 最后卷积的分组情况,=1普通卷积,>1深度可分离卷积
        :params act: bool激活函数类型,默认True[SiLU()/Swish],False[不用激活函数]
        '''        
        super().__init__()
        self.conv = Conv(c1 * 4, c2, k, s, p, g, act=act)
        # self.contract = Contract(gain=2)

    def forward(self, x):  # x(b,c,w,h) -> y(b,4c,w/2,h/2)
        ''' 有点像做了个下采样 '''
        return self.conv(torch.cat((x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]), 1))
        # return self.conv(self.contract(x))

1.4 Bottleneck

模型结构在这里插入图片描述

class Bottleneck(nn.Module):
    # Standard bottleneck  Conv + Conv + shortcut
    def __init__(self, c1, c2, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, shortcut, groups, expansion
        ''' 在BottleneckCSP和yolo.py的parse_model函数中被调用
        :params c1: 第一个卷积的输入channel
        :params c2: 第二个卷积的输入channel
        :params shortcut: bool值,是否有shortcut连接,默认True
        :params g: 卷积分组的个数,=1普通卷积,>1深度可分离卷积
        :params e: expansion ratio,e*c2就是第一个卷积的输出channel=第二个卷积的输入channel
        '''
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)      # 1x1
        self.cv2 = Conv(c_, c2, 3, 1, g=g) # 3x3
        self.add = shortcut and c1 == c2   # shortcut=Ture & c1==c2 才能做shortcut

    def forward(self, x):
        return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))

1.5 BottleneckCSP

这个模块是由Bottleneck和CSP结构组成。CSP结构来源于2019年发表的一篇论文:CSPNet: A New Backbone that can Enhance Learning Capability of CNN
这个模块和上面yolov5s中的C3模块等效,如果要用的话直接在yolov5s.yaml文件中将C3改成BottleneckCSP即可,但一般来说不用改,因为C3更好。
BottleneckCSP模块具体的结构如下所示:
在这里插入图片描述


class BottleneckCSP(nn.Module):
    # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansion
        ''' 在C3模块和yolo.py的parse_model函数中被调用
        :params c1: 整个BottleneckCSP的输入channel
        :params c2: 整个BottleneckCSP的输出channel
        :params n: 有n个Bottleneck
        :params shortcut: bool值,Bottleneck中是否有shortcut,默认True
        :params g: Bottleneck中的3x3卷积类型,=1普通卷积,>1深度可分离卷积
        :params e: expansion ratio,e*c2=中间其它所有层的卷积核个数=中间所有层的的输入输出channel
        '''
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
        self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
        self.cv4 = Conv(2 * c_, c2, 1, 1)
        self.bn = nn.BatchNorm2d(2 * c_)  # applied to cat(cv2, cv3)  2*c_
        self.act = nn.SiLU()
        # 叠加n次Bottleneck
        self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))

    def forward(self, x):
        y1 = self.cv3(self.m(self.cv1(x)))
        y2 = self.cv2(x)
        return self.cv4(self.act(self.bn(torch.cat((y1, y2), 1))))

1.6 C3

这个模块是一种简化的BottleneckCSP,因为除了Bottleneck部分只有3个卷积,可以减少参数,所以取名C3。而原作者之所以用C3来代替BottleneckCSP也是有原因的,作者原话:

C3() is an improved version of CSPBottleneck(). It is simpler, faster and lighter with similar performance and better fuse characteristics.

在这里插入图片描述

class C3(nn.Module):
    # CSP Bottleneck with 3 convolutions
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansion
        ''' 在C3RT模块和yolo.py的parse_model函数中被调用
        :params c1: 整个C3的输入channel
        :params c2: 整个C3的输出channel
        :params n: 有n个子模块[Bottleneck/CrossConv]
        :params shortcut: bool值,子模块[Bottlenec/CrossConv]中是否有shortcut,默认True
        :params g: 子模块[Bottlenec/CrossConv]中的3x3卷积类型,=1普通卷积,>1深度可分离卷积
        :params e: expansion ratio,e*c2=中间其它所有层的卷积核个数=中间所有层的的输入输出channel
        '''
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c1, c_, 1, 1)
        self.cv3 = Conv(2 * c_, c2, 1)  # optional act=FReLU(c2)
        self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
        # 实验性 CrossConv
        #self.m = nn.Sequential(*[CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)])

    def forward(self, x):
        return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))

1.7 SPP

高层网络层的感受野的语义信息表征能力强,低层网络层的感受野空间细节信息表征能力强。空间金字塔池化(Spatial Pyramid Pooling,SPP)是目标检测算法中对高层特征进行多尺度池化以增加感受野的重要措施之一。经典的空间金字塔池化模块首先将输入的卷积特征分成不同的尺寸,然后每个尺寸提取固定维度的特征,最后将这些特征拼接成一个固定的维度,如下图1所示。输入的卷积特征图的大小为(w, h),第一层空间金字塔采用4x4的刻度对特征图进行划分,其将输入的特征图分成了16个块,每块的大小为(w/4, h/4);第二层空间金字塔采用2x2的刻度对特征图进行划分,将特征图分为4个块,每块大小为(w/2, h/2);第三层空间金字塔将整张特征图作为一块,进行特征提取操作,最终的特征向量为16+4+1=21维。
在这里插入图片描述
在这里插入图片描述

class SPP(nn.Module):
    # Spatial Pyramid Pooling (SPP) layer https://arxiv.org/abs/1406.4729
    def __init__(self, c1, c2, k=(5, 9, 13)):
        ''' 在yolo.py的parse_model函数中被调用
        :params c1: SPP模块的输入channel
        :params c2: SPP模块的输出channel
        :params k: 保存着三个maxpool的卷积核大小,默认是(5, 9, 13)
        '''
        super().__init__()
        c_ = c1 // 2  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)                # 第一层卷积
        self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1) # 最后一层卷积,+1是因为有len(k)+1个输入
        self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])

    def forward(self, x):
        x = self.cv1(x)
        with warnings.catch_warnings():
            warnings.simplefilter('ignore')  # suppress torch 1.9.0 max_pool2d() warning
            return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))

1.8 Concat

这个函数是将自身(a list of tensors)按照某个维度进行concat,通常用来合并前后两个feature map,也就是上面yolov5s结构图中的Concat。


class Concat(nn.Module):
    # Concatenate a list of tensors along dimension
    def __init__(self, dimension=1):
        ''' 在yolo.py的parse_model函数中被调用
        :params dimension: 沿着哪个维度进行concat
        '''
        super().__init__()
        self.d = dimension

    def forward(self, x):
        # x: a list of tensors
        return torch.cat(x, self.d)

1.9 Contract、Expand

这两个函数用于改变feature map维度。

Contract函数改变输入特征的shape,将feature map的 w 和 h 维度(缩小)的数据收缩到channel维度上(放大)。如:x(1,64,80,80) to x(1,256,40,40)。
Expand函数也是改变输入特征的shape,不过与Contract的相反,是将channel维度(变小)的数据扩展到 W 和 H 维度(变大)。如:x(1,64,80,80) to x(1,16,160,160)。

class Contract(nn.Module):
    # Contract width-height into channels, i.e. x(1,64,80,80) to x(1,256,40,40)
    def __init__(self, gain=2):
        ''' 在yolo.py的parse_model函数中被调用,用的不多
        改变输入特征的shape,将w和h维度(缩小)的数据收缩到channel维度上(放大)
        '''
        super().__init__()
        self.gain = gain

    def forward(self, x):
        b, c, h, w = x.size()  # assert (h / s == 0) and (W / s == 0), 'Indivisible gain'
        s = self.gain  # 2
        x = x.view(b, c, h // s, s, w // s, s)  # x(1,64,40,2,40,2)
        # permute: 改变tensor的维度顺序
        x = x.permute(0, 3, 5, 1, 2, 4).contiguous()  # x(1,2,2,64,40,40)
        # .view: 改变tensor的维度
        return x.view(b, c * s * s, h // s, w // s)  # x(1,256,40,40)


class Expand(nn.Module):
    # Expand channels into width-height, i.e. x(1,64,80,80) to x(1,16,160,160)
    def __init__(self, gain=2):
        ''' 在yolo.py的parse_model函数中被调用,用的不多
        改变输入特征的shape,将channel维度(变小)的数据扩展到W和H维度上(变大)
        '''
        super().__init__()
        self.gain = gain

    def forward(self, x):
        b, c, h, w = x.size()  # assert C / s ** 2 == 0, 'Indivisible gain'
        s = self.gain  # 2
        x = x.view(b, s, s, c // s ** 2, h, w)  # x(1,2,2,16,80,80)
        x = x.permute(0, 3, 4, 1, 5, 2).contiguous()  # x(1,16,80,2,80,2)
        return x.view(b, c // s ** 2, h * s, w * s)  # x(1,16,160,160)


2.重要类

下面的几个函数都是属于模型的扩展模块。yolov5的作者将搭建模型的函数功能写的很齐全。不光包含搭建模型部分,还考虑到了各方面其它的功能,比如给模型搭载NMS功能,给模型封装成包含前处理、推理、后处理的模块(预处理 + 推理 + NMS),二次分类等等功能。

2.1 非极大值抑制(NMS)

非极大值抑制(Non-maximum Suppression(NMS))的作用简单来说就是模型检测出了很多框,我们应该留哪些。
在这里插入图片描述
YOLOv5中使用NMS算法来移除一些网络模型预测时生成的多余的检测框,该算法的核心思想是指搜索局部得分最大值预测并移除与局部最大值预测框重叠度超过一定阈值的检测框,需要注意的是,NMS算法对所有待检测目标类别分别执行,即为不同类别的检测框即使有重叠也不会被移除。
这个模块是给模型搭载NMS功能,直接调用的./utils/general.py文件的non_max_suppression()函数。

class NMS(nn.Module):
    ''' 在yolo.py中Model类的NMS函数中使用
    NMS非极大值抑制 Non-Maximum Suppression (NMS) module
    给模型model封装NMS,增加模型的扩展功能,但我们一般不用,一般直接在前向推理结束后再调用non_max_suppression函数
    '''
    conf = 0.25    # 置信度阈值
    iou = 0.45     # IOU阈值
    classes = None # 是否NMS后只保留指定的类别
    max_det = 1000 # 每张图的最大目标个数
    
    def __init__(self):
        super(NMS, self).__init__()
    
    def forward(self, x):
        '''
        :params x[0]: [batch, num_anchors(3个yolo预测层),(x+y+w+h+1+num_classes)]
        直接调用的是general.py中的non_max_suppression函数给Model扩展NMS功能
        '''
        return non_max_suppression(x[0], self.conf, iou_thres=self.iou, classes=self.classes, max_det=self.max_det)

2.2 AutoShape

这个模块是一个模型扩展模块,给模型封装成包含前处理、推理、后处理的模块(预处理 + 推理 + NMS),用的不多

class AutoShape(nn.Module):
    # YOLOv5 input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS
    # YOLOv5模型包装器,用于传递 cv2/np/PIL/torch输入
    # 包括预处理(preprocessing)、推理(inference)和NMS
    conf = 0.25  # NMS confidence threshold
    iou = 0.45  # NMS IoU threshold
    agnostic = False  # NMS class-agnostic
    multi_label = False  # NMS multiple labels per box
    classes = None  # (optional list) filter by class, i.e. = [0, 15, 16] for COCO persons, cats and dogs
    max_det = 1000  # maximum number of detections per image
    amp = False  # Automatic Mixed Precision (AMP) inference

    def __init__(self, model, verbose=True):
        super().__init__()
        if verbose:
            LOGGER.info('Adding AutoShape... ')
        copy_attr(self, model, include=('yaml', 'nc', 'hyp', 'names', 'stride', 'abc'), exclude=())  # copy attributes
        self.dmb = isinstance(model, DetectMultiBackend)  # DetectMultiBackend() instance
        self.pt = not self.dmb or model.pt  # PyTorch model
        # 开启验证模式
        self.model = model.eval()
        if self.pt:
            m = self.model.model.model[-1] if self.dmb else self.model.model[-1]  # Detect()
            m.inplace = False  # Detect.inplace=False for safe multithread inference
            m.export = True  # do not output loss values

    def _apply(self, fn):
        # Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
        self = super()._apply(fn)
        if self.pt:
            m = self.model.model.model[-1] if self.dmb else self.model.model[-1]  # Detect()
            m.stride = fn(m.stride)
            m.grid = list(map(fn, m.grid))
            if isinstance(m.anchor_grid, list):
                m.anchor_grid = list(map(fn, m.anchor_grid))
        return self

    @smart_inference_mode()
    def forward(self, ims, size=640, augment=False, profile=False):
        # Inference from various sources. For size(height=640, width=1280), RGB images example inputs are:
        #   file:        ims = 'data/images/zidane.jpg'  # str or PosixPath
        #   URI:             = 'https://ultralytics.com/images/zidane.jpg'
        #   OpenCV:          = cv2.imread('image.jpg')[:,:,::-1]  # HWC BGR to RGB x(640,1280,3)
        #   PIL:             = Image.open('image.jpg') or ImageGrab.grab()  # HWC x(640,1280,3)
        #   numpy:           = np.zeros((640,1280,3))  # HWC
        #   torch:           = torch.zeros(16,3,320,640)  # BCHW (scaled to size=640, 0-1 values)
        #   multiple:        = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...]  # list of images

        dt = (Profile(), Profile(), Profile())
        with dt[0]:
            if isinstance(size, int):  # expand
                size = (size, size)
            p = next(self.model.parameters()) if self.pt else torch.empty(1, device=self.model.device)  # param
            autocast = self.amp and (p.device.type != 'cpu')  # Automatic Mixed Precision (AMP) inference
            # 图片如果是tensor格式,说明是预处理过的,直接正常进行前向推理即可,NMS在推理结束进行(函数外写)
            if isinstance(ims, torch.Tensor):  # torch
                with amp.autocast(autocast):
                    return self.model(ims.to(p.device).type_as(p), augment=augment)  # inference

            # Pre-process
            n, ims = (len(ims), list(ims)) if isinstance(ims, (list, tuple)) else (1, [ims])  # number, list of images
            shape0, shape1, files = [], [], []  # image and inference shapes, filenames
            for i, im in enumerate(ims):
                f = f'image{i}'  # filename
                if isinstance(im, (str, Path)):  # filename or uri
                    im, f = Image.open(requests.get(im, stream=True).raw if str(im).startswith('http') else im), im
                    im = np.asarray(exif_transpose(im))
                elif isinstance(im, Image.Image):  # PIL Image
                    im, f = np.asarray(exif_transpose(im)), getattr(im, 'filename', f) or f
                files.append(Path(f).with_suffix('.jpg').name)
                if im.shape[0] < 5:  # image in CHW
                    im = im.transpose((1, 2, 0))  # reverse dataloader .transpose(2, 0, 1)
                im = im[..., :3] if im.ndim == 3 else cv2.cvtColor(im, cv2.COLOR_GRAY2BGR)  # enforce 3ch input
                s = im.shape[:2]  # HWC
                shape0.append(s)  # image shape
                g = max(size) / max(s)  # gain
                shape1.append([int(y * g) for y in s])
                ims[i] = im if im.data.contiguous else np.ascontiguousarray(im)  # update
            shape1 = [make_divisible(x, self.stride) for x in np.array(shape1).max(0)]  # inf shape
            x = [letterbox(im, shape1, auto=False)[0] for im in ims]  # pad
            x = np.ascontiguousarray(np.array(x).transpose((0, 3, 1, 2)))  # stack and BHWC to BCHW
            x = torch.from_numpy(x).to(p.device).type_as(p) / 255  # uint8 to fp16/32

        with amp.autocast(autocast):
            # Inference
            with dt[1]:
                y = self.model(x, augment=augment)  # forward

            # Post-process
            with dt[2]:
                y = non_max_suppression(y if self.dmb else y[0],
                                        self.conf,
                                        self.iou,
                                        self.classes,
                                        self.agnostic,
                                        self.multi_label,
                                        max_det=self.max_det)  # NMS
                for i in range(n):
                    scale_boxes(shape1, y[i][:, :4], shape0[i])

            return Detections(ims, y, files, dt, self.names, x.shape)

2.3 Detections

这是专门针对目标检测的封装类。


class Detections:
    # YOLOv5 detections class for inference results
    # YOLOv5推理结果检测类
    def __init__(self, ims, pred, files, times=(0, 0, 0), names=None, shape=None):
        super().__init__()
        d = pred[0].device  # device
        gn = [torch.tensor([*(im.shape[i] for i in [1, 0, 1, 0]), 1, 1], device=d) for im in ims]  # normalizations
        self.ims = ims  # list of images as numpy arrays
        self.pred = pred  # list of tensors pred[0] = (xyxy, conf, cls)
        self.names = names  # class names
        self.files = files  # image filenames
        self.times = times  # profiling times
        self.xyxy = pred  # xyxy pixels
        self.xywh = [xyxy2xywh(x) for x in pred]  # xywh pixels
        self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)]  # xyxy normalized
        self.xywhn = [x / g for x, g in zip(self.xywh, gn)]  # xywh normalized
        self.n = len(self.pred)  # number of images (batch size)
        self.t = tuple(x.t / self.n * 1E3 for x in times)  # timestamps (ms)
        self.s = tuple(shape)  # inference BCHW shape

    def _run(self, pprint=False, show=False, save=False, crop=False, render=False, labels=True, save_dir=Path('')):
        s, crops = '', []
        for i, (im, pred) in enumerate(zip(self.ims, self.pred)):
            s += f'\nimage {i + 1}/{len(self.pred)}: {im.shape[0]}x{im.shape[1]} '  # string
            if pred.shape[0]:
                for c in pred[:, -1].unique():
                    n = (pred[:, -1] == c).sum()  # detections per class
                    s += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, "  # add to string
                s = s.rstrip(', ')
                if show or save or render or crop:
                    annotator = Annotator(im, example=str(self.names))
                    for *box, conf, cls in reversed(pred):  # xyxy, confidence, class
                        label = f'{self.names[int(cls)]} {conf:.2f}'
                        if crop:
                            file = save_dir / 'crops' / self.names[int(cls)] / self.files[i] if save else None
                            crops.append({
                                'box': box,
                                'conf': conf,
                                'cls': cls,
                                'label': label,
                                'im': save_one_box(box, im, file=file, save=save)})
                        else:  # all others
                            annotator.box_label(box, label if labels else '', color=colors(cls))
                    im = annotator.im
            else:
                s += '(no detections)'

            im = Image.fromarray(im.astype(np.uint8)) if isinstance(im, np.ndarray) else im  # from np
            if show:
                display(im) if is_notebook() else im.show(self.files[i])
            if save:
                f = self.files[i]
                im.save(save_dir / f)  # save
                if i == self.n - 1:
                    LOGGER.info(f"Saved {self.n} image{'s' * (self.n > 1)} to {colorstr('bold', save_dir)}")
            if render:
                self.ims[i] = np.asarray(im)
        if pprint:
            s = s.lstrip('\n')
            return f'{s}\nSpeed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {self.s}' % self.t
        if crop:
            if save:
                LOGGER.info(f'Saved results to {save_dir}\n')
            return crops

    @TryExcept('Showing images is not supported in this environment')
    def show(self, labels=True):
        self._run(show=True, labels=labels)  # show results

    def save(self, labels=True, save_dir='runs/detect/exp', exist_ok=False):
        save_dir = increment_path(save_dir, exist_ok, mkdir=True)  # increment save_dir
        self._run(save=True, labels=labels, save_dir=save_dir)  # save results

    def crop(self, save=True, save_dir='runs/detect/exp', exist_ok=False):
        save_dir = increment_path(save_dir, exist_ok, mkdir=True) if save else None
        return self._run(crop=True, save=save, save_dir=save_dir)  # crop results

    def render(self, labels=True):
        self._run(render=True, labels=labels)  # render results
        return self.ims

    def pandas(self):
        # return detections as pandas DataFrames, i.e. print(results.pandas().xyxy[0])
        new = copy(self)  # return copy
        ca = 'xmin', 'ymin', 'xmax', 'ymax', 'confidence', 'class', 'name'  # xyxy columns
        cb = 'xcenter', 'ycenter', 'width', 'height', 'confidence', 'class', 'name'  # xywh columns
        for k, c in zip(['xyxy', 'xyxyn', 'xywh', 'xywhn'], [ca, ca, cb, cb]):
            a = [[x[:5] + [int(x[5]), self.names[int(x[5])]] for x in x.tolist()] for x in getattr(self, k)]  # update
            setattr(new, k, [pd.DataFrame(x, columns=c) for x in a])
        return new

    def tolist(self):
        # return a list of Detections objects, i.e. 'for result in results.tolist():'
        r = range(self.n)  # iterable
        x = [Detections([self.ims[i]], [self.pred[i]], [self.files[i]], self.times, self.names, self.s) for i in r]
        # for d in x:
        #    for k in ['ims', 'pred', 'xyxy', 'xyxyn', 'xywh', 'xywhn']:
        #        setattr(d, k, getattr(d, k)[0])  # pop out of list
        return x

    def print(self):
        LOGGER.info(self.__str__())

    def __len__(self):  # override len(results)
        return self.n

    def __str__(self):  # override print(results)
        return self._run(pprint=True)  # print results

    def __repr__(self):
        return f'YOLOv5 {self.__class__} instance\n' + self.__str__()

2.4 Classify

这是一个二级分类模块。什么是二级分类模块?比如做车牌识别,先识别出车牌,如果相对车牌上的字进行识别,就需要二级分类进一步检测。


class Classify(nn.Module):
    # YOLOv5 classification head, i.e. x(b,c1,20,20) to x(b,c2)
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1):  # ch_in, ch_out, kernel, stride, padding, groups
        ''' 这是一个二级分类模块
        如果对模型输出的分类在进行分类,就可以用这个模块。
        不过这里这个类写的比较简单,若进行复杂的二级分类,可以根据自己的实际任务改下,这里代码不唯一。
        '''
        super().__init__()
        c_ = 1280  # efficientnet_b0 size
        self.conv = Conv(c1, c_, k, s, autopad(k, p), g)
        self.pool = nn.AdaptiveAvgPool2d(1)  # to x(b,c_,1,1)
        self.drop = nn.Dropout(p=0.0, inplace=True)
        self.linear = nn.Linear(c_, c2)  # to x(b,c2)

    def forward(self, x):
        if isinstance(x, list):
            x = torch.cat(x, 1)
        return self.linear(self.drop(self.pool(self.conv(x)).flatten(1)))

C3模块修改如下(去掉concat后的卷积层):


class C3(nn.Module):
    # CSP Bottleneck with 3 convolutions
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansion
        ''' 在C3RT模块和yolo.py的parse_model函数中被调用
        :params c1: 整个C3的输入channel
        :params c2: 整个C3的输出channel
        :params n: 有n个子模块[Bottleneck/CrossConv]
        :params shortcut: bool值,子模块[Bottlenec/CrossConv]中是否有shortcut,默认True
        :params g: 子模块[Bottlenec/CrossConv]中的3x3卷积类型,=1普通卷积,>1深度可分离卷积
        :params e: expansion ratio,e*c2=中间其它所有层的卷积核个数=中间所有层的的输入输出channel
        '''
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c1, c_, 1, 1)
        self.cv3 = Conv(2 * c_, c2, 1)  # optional act=FReLU(c2)
        self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
        # 实验性 CrossConv
        #self.m = nn.Sequential(*[CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)])

    def forward(self, x):
        #return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))
        # 移除cv3卷积层后,若要保持最终输出的channel仍为c2,则中间层的channel需为c2/2
        # 设置e=0.5即可,取默认值不变
        return torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/24057.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

掌握了它,软件测试拿下25K轻轻松松!

了解软件测试这行的人都清楚&#xff0c;功能测试的天花板可能也就15k左右&#xff0c;而自动化的起点就在15k左右&#xff0c;当然两个岗位需要掌握的技能肯定是不一样的。 如果刚入门学习完软件测试&#xff0c;那么基本薪资会在7-8k左右&#xff0c;这个薪资不太高主要是因…

STM8、STM8S003F3P6 实现PWM控制电机HAS10227

背景 有个项目需要控制一台风机的转速&#xff0c;使用STM8S003F3P6 输出PWM控制&#xff0c;这里就详细记录一下调试记录 原理图 原理图比较简单&#xff0c;电机接口CN3 电机接口原理图 与MCU管脚连接位置如下图 首先我们要明白电机的原理 电机 简单来说就是 实现电能与…

锁的内存语义

锁的释放和获取的内存语义 操作锁的释放和获取的内存语义类比volatile对锁释放和锁获取的内存语义做个总结当线程 释放锁 时JMM会把该线程对应的本地内存中的共享变量刷新到主内存中锁释放与 volatile写 有相同的内存语义线程A释放一个锁&#xff0c;实质上是线程A向接下来将…

功率信号源的使用方法有哪些

功率信号源是一种常见的电子设备&#xff0c;主要用于产生各种功率信号&#xff0c;例如直流信号、正弦信号等。功率信号源广泛应用于工业、科研、医疗等领域&#xff0c;例如电机驱动、电子仪器仪表、医疗设备等。本文将详细介绍功率信号源的使用方法和注意事项。 图&#xff…

WMS仓储管理系统解决方案能帮助电子企业解决哪些问题

WMS仓储管理系统解决方案是一种针对仓库管理的软件系统&#xff0c;它能够有效地解决电子企业在仓储管理方面的问题。在电子行业&#xff0c;由于产品的生命周期较短&#xff0c;且需求变化快速&#xff0c;WMS仓库管理系统的应用对于电子企业的管理有着重要的意义。本文将探讨…

【MySQL】MySql的底层数据结构

文章目录 前言索引结构及查找算法不适合做MySql的数据结构及其原因 一、BTree和BTree的引出1.1 BTree数据结构2.2 BTree数据结构 二、计算m阶&#xff0c;即BTree该取多少合适总结 前言 索引结构及查找算法 一个sql语句在mysql里究竟是如何运行的呢&#xff1f;又是怎么去查找…

华为云服务器租用费用及CPU性能(1核2G/2核4G/4核8G)

华为云HECS云服务器即云耀云服务器&#xff0c;类似于阿里云和腾讯云的轻量应用服务器&#xff0c;HECS云服务器1核2G配置39.02元一年、2核4G配置99元一年、4核8G配置69.94元3个月&#xff0c;华为云百科分享华为云HECS云服务器租用费用及CPU性能详解&#xff1a; 目录 华为云…

《数据库应用系统实践》------ 包裹信息管理系统

系列文章 《数据库应用系统实践》------ 包裹信息管理系统 文章目录 系列文章一、需求分析1、系统背景2、 系统功能结构&#xff08;需包含功能结构框图和模块说明&#xff09;3&#xff0e;系统功能简介 二、概念模型设计1&#xff0e;基本要素&#xff08;符号介绍说明&…

immutable深拷贝:数据多层属性-不可变数据结构

一、为何要用immutable深拷贝&#xff1f; 1.浅拷贝&#xff08;浅复制&#xff09; //引用赋值-浅复制、浅拷贝 var obj{name:"溜溜球"}var obj2obj;obj2.name"刘刘球";console.log(obj);//name:"刘刘球"console.log(obj2);//name:"刘刘…

解说天下之操作系统

解说天下之操作系统 本文由桌案drawon (https://www.drawon.cn)&#xff0c;云晶&#xff08;https://www.yunjingxz.com&#xff09;创始人根据多年从业经验&#xff0c; 从操作系统的起源&#xff0c;应用分类&#xff0c; 设计分类&#xff0c;以及资源使用角度对操作系统进…

2023年6月18日DAMA-CDGA/CDGP认证北京/上海/深圳报名

DAMA认证为数据管理专业人士提供职业目标晋升规划&#xff0c;彰显了职业发展里程碑及发展阶梯定义&#xff0c;帮助数据管理从业人士获得企业数字化转型战略下的必备职业能力&#xff0c;促进开展工作实践应用及实际问题解决&#xff0c;形成企业所需的新数字经济下的核心职业…

思维导图到底有多少种?

思维导图是一种非常实用的工具&#xff0c;它可以帮助我们更好地组织和表达我们的思想。在日常生活和工作中&#xff0c;我们可以使用各种不同类型的思维导图来解决不同的问题。下面&#xff0c;我将介绍一些常见的思维导图类型以及如何使用ProcessOn思维导图软件制作思维导图。…

ThreadLocal的应用

1. ThreadLocal 是什么 JDK 对ThreadLocal的描述为&#xff1a; 此类提供线程局部变量。这些变量与普通变量的不同之处在于&#xff0c;每个访问一个变量的线程&#xff08;通过其get或set方法&#xff09;都有自己的、独立初始化的变量副本。ThreadLocal 实例通常是类中的私有…

Centos7安装Java8(在线安装避坑详细安装)

开篇语&#xff1a; 喜欢在一个明媚阳光的午后 坐在那夕阳斑驳的南墙下 听着风起 闻着花香 望着远山 身边是你 如此便觉得很好 1.查看目前环境 rpm -qa|grep jdk在这里我们会发现&#xff0c;原有系统安装有jdk&#xff0c;如果对于jdk有要求&#xff0c;我们就需要重新安装jdk…

面了一个测试工程师要求月薪26K,总感觉他背了很多面试题...

最近有朋友去字节面试&#xff0c;面试前后进行了20天左右&#xff0c;包含4轮电话面试、1轮笔试、1轮主管视频面试、1轮hr视频面试。 据他所说&#xff0c;80%的人都会栽在第一轮面试&#xff0c;要不是他面试前做足准备&#xff0c;估计都坚持不完后面几轮面试。 其实&…

3DMAX车缝线生成器插件使用方法详解

3dMax车缝线生成器插件,用于创建缝合对象和一个对象,以沿样条线或仅通过绘制选定边上的缝合之间的孔。 目前有两种类型的缝线,圆形缝线和平面缝线。对于给定类型的针脚,它们的厚度是最常用的。缝线的长度和间距以及旋转都可以很容易地调整,这些参数也可以随机设置,以创造…

[C语言][典例详解]打印杨辉三角(找规律简单实现)

目录 杨辉三角的相关知识 杨辉三角图&#xff1a; 杨辉三角的规律 在编程中实现 第一步 &#xff1a;我们先实现数字的打印&#xff0c;后面再加上空格构成三角形形状&#xff1b; ​编辑 1.首先我们可以直观的看出三角形的两个斜边都是1&#xff1b;所以我们先打印斜边的…

Python自动化测试框架有哪些?怎么选

目录 自动化测试框架概念 自动化测试框架根据思想理念和深度不同&#xff0c;渐进式的分为以下几种&#xff1a; 模块化测试脚本框架&#xff1a; 测试库框架&#xff1a; 数据驱动测试框架&#xff1a; 关键字驱动或表驱动的测试框架&#xff1a; 混合测试自动化框架&am…

沉浸式翻译 安装及使用

介绍一下最近非常或的沉浸式翻译工具&#xff0c;非常有助于外文阅读&#xff0c;包括网页、pdf等。可以同时显示原文和译文&#xff0c;操作简单&#xff0c;使用起来还是非常友好的。 先上链接&#xff1a;介绍 - 沉浸式翻译 如何使用 - 沉浸式翻译 1.安装 支持Edg…

Linux——使用命令行参数管理环境变量

目录 使用命令行参数获取用户在DOS命令行输入的指令&#xff1a; 方法&#xff1a;代码如下&#xff1a; 使用命令行参数获取并打印部分或者整体环境变量的方法&#xff1a; 方法1&#xff1a; 运行结果&#xff1a; 方法2&#xff1a;使用外部链接environ: 使用命令行参数…