科技提升安全,基于YOLOv7【tiny/yolov7/yolov7x】开发构建商超扶梯场景下行人安全行为姿态检测识别系统

在商超等人流量较为密集的场景下经常会报道出现一些行人在扶梯上摔倒、受伤等问题,随着AI技术的快速发展与不断普及,越来越多的商超、地铁等场景开始加装专用的安全检测预警系统,核心工作原理即使AI模型与摄像头图像视频流的实时计算,通过对行为扶梯上的行为进行实时检测识别来对出现的危险行为进行快速预警响应避免后续出现严重的后果。本文的主要目的就是想要基于商超扶梯场景来开发构建行人安全行为检测识别系统,探索分析基于AI科技提升安全保障的可行性,本文是AI助力商超扶梯等场景安全提升的第六篇文章,前文系列如下:

《科技提升安全,基于SSD开发构建商超扶梯场景下行人安全行为姿态检测识别系统》
https://blog.csdn.net/Together_CZ/article/details/134892776

《科技提升安全,基于YOLOv3开发构建商超扶梯场景下行人安全行为姿态检测识别系统》 
https://blog.csdn.net/Together_CZ/article/details/134892866

《科技提升安全,基于YOLOv4开发构建商超扶梯场景下行人安全行为姿态检测识别系统》
https://blog.csdn.net/Together_CZ/article/details/134893058

《科技提升安全,基于YOLOv5系列模型【n/s/m/l/x】开发构建商超扶梯场景下行人安全行为姿态检测识别系统》
https://blog.csdn.net/Together_CZ/article/details/134918766

《科技提升安全,基于YOLOv6开发构建商超扶梯场景下行人安全行为姿态检测识别系统》
https://blog.csdn.net/Together_CZ/article/details/134925452

首先看下实例效果:

YOLOv7是 YOLO 系列最新推出的YOLO 结构,在 5 帧/秒到 160 帧/秒范围内,其速度和精度都超过了大部分已知的目标检测器,在 GPU V100 已知的 30 帧/秒以上的实时目标检测器中,YOLOv7 的准确率最高。根据代码运行环境的不同(边缘 GPU、普通 GPU 和云 GPU),YOLOv7 设置了三种基本模型,分别称为 YOLOv7-tiny、YOLOv7和 YOLOv7-W6。相比于 YOLO 系列其他网络 模 型 ,YOLOv7 的 检 测 思 路 与YOLOv4、YOLOv5相似,YOLOv7 网络主要包含了 Input(输入)、Backbone(骨干网络)、Neck(颈部)、Head(头部)这四个部分。首先,图片经过输入部分数据增强等一系列操作进行预处理后,被送入主干网,主干网部分对处理后的图片提取特征;随后,提取到的特征经过 Neck 模块特征融合处理得到大、中、小三种尺寸的特征;最终,融合后的特征被送入检测头,经过检测之后输出得到结果。
YOLOv7 网络模型的主干网部分主要由卷积、E-ELAN 模块、MPConv 模块以及SPPCSPC 模块构建而成 。在 Neck 模块,YOLOv7 与 YOLOv5 网络相同,也采用了传统的 PAFPN 结构。FPN是YoloV7的加强特征提取网络,在主干部分获得的三个有效特征层会在这一部分进行特征融合,特征融合的目的是结合不同尺度的特征信息。在FPN部分,已经获得的有效特征层被用于继续提取特征。在YoloV7里依然使用到了Panet的结构,我们不仅会对特征进行上采样实现特征融合,还会对特征再次进行下采样实现特征融合。Head检测头部分,YOLOv7 选用了表示大、中、小三种目标尺寸的 IDetect 检测头,RepConv模块在训练和推理时结构具有一定的区别。
简单看下实例数据情况:

这里主要是选择了yolov7-tiny、yolov7和yolov7x三款不同参数量级的模型来进行开发训练,训练数据配置文件如下:

# txt path 
train: ./dataset/images/train
val: ./dataset/images/test
test: ./dataset/images/test



# number of classes
nc: 4

# class names
names: ['bow', 'down', 'shake', 'up']

【yolov7-tiny】模型文件如下:

# parameters
nc: 4  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple
 
# anchors
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32
 
# yolov7-tiny backbone
backbone:
  # [from, number, module, args] c2, k=1, s=1, p=None, g=1, act=True
  [[-1, 1, Conv, [32, 3, 2, None, 1, nn.LeakyReLU(0.1)]],  # 0-P1/2  
  
   [-1, 1, Conv, [64, 3, 2, None, 1, nn.LeakyReLU(0.1)]],  # 1-P2/4    
   
   [-1, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-2, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, -2, -3, -4], 1, Concat, [1]],
   [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 7
   
   [-1, 1, MP, []],  # 8-P3/8
   [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, -2, -3, -4], 1, Concat, [1]],
   [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 14
   
   [-1, 1, MP, []],  # 15-P4/16
   [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-2, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, -2, -3, -4], 1, Concat, [1]],
   [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 21
   
   [-1, 1, MP, []],  # 22-P5/32
   [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-2, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, -2, -3, -4], 1, Concat, [1]],
   [-1, 1, Conv, [512, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 28
  ]
 
# yolov7-tiny head
head:
  [[-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-2, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, SP, [5]],
   [-2, 1, SP, [9]],
   [-3, 1, SP, [13]],
   [[-1, -2, -3, -4], 1, Concat, [1]],
   [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, -7], 1, Concat, [1]],
   [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 37
  
   [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [21, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # route backbone P4
   [[-1, -2], 1, Concat, [1]],
   
   [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, -2, -3, -4], 1, Concat, [1]],
   [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 47
  
   [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [14, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # route backbone P3
   [[-1, -2], 1, Concat, [1]],
   
   [-1, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-2, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, -2, -3, -4], 1, Concat, [1]],
   [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 57
   
   [-1, 1, Conv, [128, 3, 2, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, 47], 1, Concat, [1]],
   
   [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, -2, -3, -4], 1, Concat, [1]],
   [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 65
   
   [-1, 1, Conv, [256, 3, 2, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, 37], 1, Concat, [1]],
   
   [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-2, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, -2, -3, -4], 1, Concat, [1]],
   [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 73
      
   [57, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [65, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [73, 1, Conv, [512, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
 
   [[74,75,76], 1, IDetect, [nc, anchors]],   # Detect(P3, P4, P5)
  ]

【yolov7】模型文件如下:

# parameters
nc: 4  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple
 
# anchors
anchors:
  - [12,16, 19,36, 40,28]  # P3/8
  - [36,75, 76,55, 72,146]  # P4/16
  - [142,110, 192,243, 459,401]  # P5/32
 
# yolov7 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [32, 3, 1]],  # 0
  
   [-1, 1, Conv, [64, 3, 2]],  # 1-P1/2      
   [-1, 1, Conv, [64, 3, 1]],
   
   [-1, 1, Conv, [128, 3, 2]],  # 3-P2/4  
   [-1, 1, Conv, [64, 1, 1]],
   [-2, 1, Conv, [64, 1, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [[-1, -3, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [256, 1, 1]],  # 11
         
   [-1, 1, MP, []],
   [-1, 1, Conv, [128, 1, 1]],
   [-3, 1, Conv, [128, 1, 1]],
   [-1, 1, Conv, [128, 3, 2]],
   [[-1, -3], 1, Concat, [1]],  # 16-P3/8  
   [-1, 1, Conv, [128, 1, 1]],
   [-2, 1, Conv, [128, 1, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [[-1, -3, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [512, 1, 1]],  # 24
         
   [-1, 1, MP, []],
   [-1, 1, Conv, [256, 1, 1]],
   [-3, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [256, 3, 2]],
   [[-1, -3], 1, Concat, [1]],  # 29-P4/16  
   [-1, 1, Conv, [256, 1, 1]],
   [-2, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [[-1, -3, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [1024, 1, 1]],  # 37
         
   [-1, 1, MP, []],
   [-1, 1, Conv, [512, 1, 1]],
   [-3, 1, Conv, [512, 1, 1]],
   [-1, 1, Conv, [512, 3, 2]],
   [[-1, -3], 1, Concat, [1]],  # 42-P5/32  
   [-1, 1, Conv, [256, 1, 1]],
   [-2, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [[-1, -3, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [1024, 1, 1]],  # 50
  ]
 
# yolov7 head
head:
  [[-1, 1, SPPCSPC, [512]], # 51
  
   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [37, 1, Conv, [256, 1, 1]], # route backbone P4
   [[-1, -2], 1, Concat, [1]],
   
   [-1, 1, Conv, [256, 1, 1]],
   [-2, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [256, 1, 1]], # 63
   
   [-1, 1, Conv, [128, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [24, 1, Conv, [128, 1, 1]], # route backbone P3
   [[-1, -2], 1, Concat, [1]],
   
   [-1, 1, Conv, [128, 1, 1]],
   [-2, 1, Conv, [128, 1, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [128, 1, 1]], # 75
      
   [-1, 1, MP, []],
   [-1, 1, Conv, [128, 1, 1]],
   [-3, 1, Conv, [128, 1, 1]],
   [-1, 1, Conv, [128, 3, 2]],
   [[-1, -3, 63], 1, Concat, [1]],
   
   [-1, 1, Conv, [256, 1, 1]],
   [-2, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [256, 1, 1]], # 88
      
   [-1, 1, MP, []],
   [-1, 1, Conv, [256, 1, 1]],
   [-3, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [256, 3, 2]],
   [[-1, -3, 51], 1, Concat, [1]],
   
   [-1, 1, Conv, [512, 1, 1]],
   [-2, 1, Conv, [512, 1, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [512, 1, 1]], # 101
   
   [75, 1, RepConv, [256, 3, 1]],
   [88, 1, RepConv, [512, 3, 1]],
   [101, 1, RepConv, [1024, 3, 1]],
 
   [[102,103,104], 1, IDetect, [nc, anchors]],   # Detect(P3, P4, P5)
  ]

【yolov7x】模型文件如下:

# parameters
nc: 4  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple
 
# anchors
anchors:
  - [12,16, 19,36, 40,28]  # P3/8
  - [36,75, 76,55, 72,146]  # P4/16
  - [142,110, 192,243, 459,401]  # P5/32
 
# yolov7 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [40, 3, 1]],  # 0
  
   [-1, 1, Conv, [80, 3, 2]],  # 1-P1/2      
   [-1, 1, Conv, [80, 3, 1]],
   
   [-1, 1, Conv, [160, 3, 2]],  # 3-P2/4  
   [-1, 1, Conv, [64, 1, 1]],
   [-2, 1, Conv, [64, 1, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [[-1, -3, -5, -7, -8], 1, Concat, [1]],
   [-1, 1, Conv, [320, 1, 1]],  # 13
         
   [-1, 1, MP, []],
   [-1, 1, Conv, [160, 1, 1]],
   [-3, 1, Conv, [160, 1, 1]],
   [-1, 1, Conv, [160, 3, 2]],
   [[-1, -3], 1, Concat, [1]],  # 18-P3/8  
   [-1, 1, Conv, [128, 1, 1]],
   [-2, 1, Conv, [128, 1, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [[-1, -3, -5, -7, -8], 1, Concat, [1]],
   [-1, 1, Conv, [640, 1, 1]],  # 28
         
   [-1, 1, MP, []],
   [-1, 1, Conv, [320, 1, 1]],
   [-3, 1, Conv, [320, 1, 1]],
   [-1, 1, Conv, [320, 3, 2]],
   [[-1, -3], 1, Concat, [1]],  # 33-P4/16  
   [-1, 1, Conv, [256, 1, 1]],
   [-2, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [[-1, -3, -5, -7, -8], 1, Concat, [1]],
   [-1, 1, Conv, [1280, 1, 1]],  # 43
         
   [-1, 1, MP, []],
   [-1, 1, Conv, [640, 1, 1]],
   [-3, 1, Conv, [640, 1, 1]],
   [-1, 1, Conv, [640, 3, 2]],
   [[-1, -3], 1, Concat, [1]],  # 48-P5/32  
   [-1, 1, Conv, [256, 1, 1]],
   [-2, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [[-1, -3, -5, -7, -8], 1, Concat, [1]],
   [-1, 1, Conv, [1280, 1, 1]],  # 58
  ]
 
# yolov7 head
head:
  [[-1, 1, SPPCSPC, [640]], # 59
  
   [-1, 1, Conv, [320, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [43, 1, Conv, [320, 1, 1]], # route backbone P4
   [[-1, -2], 1, Concat, [1]],
   
   [-1, 1, Conv, [256, 1, 1]],
   [-2, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [[-1, -3, -5, -7, -8], 1, Concat, [1]],
   [-1, 1, Conv, [320, 1, 1]], # 73
   
   [-1, 1, Conv, [160, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [28, 1, Conv, [160, 1, 1]], # route backbone P3
   [[-1, -2], 1, Concat, [1]],
   
   [-1, 1, Conv, [128, 1, 1]],
   [-2, 1, Conv, [128, 1, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [[-1, -3, -5, -7, -8], 1, Concat, [1]],
   [-1, 1, Conv, [160, 1, 1]], # 87
      
   [-1, 1, MP, []],
   [-1, 1, Conv, [160, 1, 1]],
   [-3, 1, Conv, [160, 1, 1]],
   [-1, 1, Conv, [160, 3, 2]],
   [[-1, -3, 73], 1, Concat, [1]],
   
   [-1, 1, Conv, [256, 1, 1]],
   [-2, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [[-1, -3, -5, -7, -8], 1, Concat, [1]],
   [-1, 1, Conv, [320, 1, 1]], # 102
      
   [-1, 1, MP, []],
   [-1, 1, Conv, [320, 1, 1]],
   [-3, 1, Conv, [320, 1, 1]],
   [-1, 1, Conv, [320, 3, 2]],
   [[-1, -3, 59], 1, Concat, [1]],
   
   [-1, 1, Conv, [512, 1, 1]],
   [-2, 1, Conv, [512, 1, 1]],
   [-1, 1, Conv, [512, 3, 1]],
   [-1, 1, Conv, [512, 3, 1]],
   [-1, 1, Conv, [512, 3, 1]],
   [-1, 1, Conv, [512, 3, 1]],
   [-1, 1, Conv, [512, 3, 1]],
   [-1, 1, Conv, [512, 3, 1]],
   [[-1, -3, -5, -7, -8], 1, Concat, [1]],
   [-1, 1, Conv, [640, 1, 1]], # 117
   
   [87, 1, Conv, [320, 3, 1]],
   [102, 1, Conv, [640, 3, 1]],
   [117, 1, Conv, [1280, 3, 1]],
 
   [[118,119,120], 1, IDetect, [nc, anchors]],   # Detect(P3, P4, P5)
  ]

在实验阶段保持完全相同的参数设置,等待全部训练完成之后来从多个指标的维度来进行综合的对比分析。

【Precision曲线】
精确率曲线(Precision-Recall Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
绘制精确率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率和召回率。
将每个阈值下的精确率和召回率绘制在同一个图表上,形成精确率曲线。
根据精确率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察精确率曲线,我们可以根据需求确定最佳的阈值,以平衡精确率和召回率。较高的精确率意味着较少的误报,而较高的召回率则表示较少的漏报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
精确率曲线通常与召回率曲线(Recall Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。
召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。
绘制召回率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的召回率和对应的精确率。
将每个阈值下的召回率和精确率绘制在同一个图表上,形成召回率曲线。
根据召回率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察召回率曲线,我们可以根据需求确定最佳的阈值,以平衡召回率和精确率。较高的召回率表示较少的漏报,而较高的精确率意味着较少的误报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
召回率曲线通常与精确率曲线(Precision Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能。
F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。
绘制F1值曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率、召回率和F1分数。
将每个阈值下的精确率、召回率和F1分数绘制在同一个图表上,形成F1值曲线。
根据F1值曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
F1值曲线通常与接收者操作特征曲线(ROC曲线)一起使用,以帮助评估和比较不同模型的性能。它们提供了更全面的分类器性能分析,可以根据具体应用场景来选择合适的模型和阈值设置。

不难发现,整体对比分析下来tiny系列的模型精度最低,yolov7和yolov7x系列的模型精度较为接近,但是yolov7具有速度的优势,在实际选择落地的时候会优先选择使用yolov7模型来进行开发设计。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/240186.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

头歌——HBase 开发:使用Java操作HBase

第1关:创建表 题目 任务描述 本关任务:使用Java代码在HBase中创建表。 相关知识 为了完成本关任务,你需要掌握:1.如何使用Java连接HBase数据库,2.如何使用Java代码在HBase中创建表。 如何使用Java连接HBase数据库…

网神 SecGate3600 authManageSet.cgi信息泄露漏洞复现

漏洞概述 网神SecGate 3600 authManageSet.cgi 接口存在敏感信息泄露漏洞,未授权得攻击者可以通过此漏洞获取控制台管理员用户名密码等凭据,可登录控制整个后台,使系统处于极不安全的状态 复现环境 FOFA:body"sec_gate_im…

python冒泡排序

冒泡排序思想 大家可以把我们所有的需要排列的数字想象成一个水中的气泡,大的数字想象成大气泡,小的数字想象成小气泡。 其实冒泡排序就是比较相邻的两个数字的大小,然后大的数字排在小的数字的后面,我们依次比较,第一…

“百里挑一”AI原生应用亮相,百度智能云千帆AI加速器首个Demo Day来了!

作者简介: 辭七七,目前大二,正在学习C/C,Java,Python等 作者主页: 七七的个人主页 文章收录专栏: 七七的闲谈 欢迎大家点赞 👍 收藏 ⭐ 加关注哦!💖&#x1f…

Android : BottomNavigation底部导航_简单应用

示例图&#xff1a; 1.先创建底部导航需要的图片 res → New → Vector Asset 创建三个矢量图 图片1 baseline_home.xml <vector android:height"24dp" android:tint"#000000"android:viewportHeight"24" android:viewportWidth"24…

MySQL BinLog 数据还原恢复

博文目录 文章目录 查看状态查看 binlog 开关及存储路径查看 binlog 配置 如 存储格式 binlog_format查看当前还存在的日志查看当前正在使用的日志 切换日志确定日志确定日志文件日志格式改写日志简要说明确定日志位置以事件为单位查看日志分析日志 还原数据 查看状态 查看 b…

循环神经网络-1

目录 1 数据集构建 1.1 数据集的构建函数 1.2 加载数据并进行数据划分 1.3 构造Dataset类 2 模型构建 2.1 嵌入层 2.2 SRN层 2.3 线性层 2.4 模型汇总 3 模型训练 3.1 训练指定长度的数字预测模型 3.2 多组训练 3.3 损失曲线展示 4 模型评价 总结 参考文献 循环神经网络&…

记录一下如何使用python生成二维码 并简单练习命令行参数供初学者参考

主代码main.py 后面是演示效果图&#xff1a; import argparse import sysimport qrcode import os qr qrcode.QRCode(version1,error_correctionqrcode.constants.ERROR_CORRECT_L,box_size10,border4, ) fileList[] fileName[]parserargparse.ArgumentParser(description生…

Uncaught ReferenceError: jQuery is not defined解决方法

当我在写java的Maven项目时&#xff0c;出现了这样的一个报错信息&#xff1a; 我一直找代码&#xff0c;抓包&#xff0c;调试&#xff0c;比对代码 jQuery未定义就是指JS的导包没有导进来&#xff01;&#xff01;&#xff01;&#xff01; 导进来就运行正常啦

Docker部署Nacos集群并用nginx反向代理负载均衡

首先找到Nacos官网给的Github仓库&#xff0c;里面有docker compose可以快速启动Nacos集群。 文章目录 一. 脚本概况二. 自定义修改1. example/cluster-hostname.yaml2. example/.env3. env/mysql.env4. env/nacos-hostname.env 三、运行四、nginx反向代理&#xff0c;负载均衡…

二、SpringFramework 介绍

2.1 Spring 和 SpringFramework概念 https://spring.io/projects 广义的 Spring&#xff1a;Spring 技术栈&#xff08;全家桶&#xff09; 广义上的 Spring 泛指以 Spring Framework 为基础的 Spring 技术栈。 经过十多年的发展&#xff0c;Spring 已经不再是一个单纯的应…

OpenHarmony 如何去除系统锁屏应用

前言 OpenHarmony源码版本&#xff1a;4.0release / 3.2 release 开发板&#xff1a;DAYU / rk3568 一、3.2版本去除锁屏应用 在源码根目录下&#xff1a;productdefine/common/inherit/rich.json 中删除screenlock_mgr组件的编译配置&#xff0c;在rich.json文件中搜索th…

保姆级:Windows Server 2012上安装.NET Framework 3.5

目录 一.问题所在无法在安装SQL server2008&#xff08;2012&#xff09; 1.无法安装一下功能 .NET Framework 3.5 二.解决措施 1、打开服务器管理器 2、添加角色和功能 3、选择安装功能 4、指定备用源路径 5、配置本地文件路径 一.问题所在无法在安装SQL server2008&…

西南交通大学【数据结构实验8】

实验内容及要求&#xff1a; 编写控制台应用程序&#xff0c;提供以下菜单项&#xff1a; 插入元素 从键盘输入若干两两互不相同的非0整数&#xff0c;直到输入0时停止。将输入的所有非0整数按输入次序插入二叉排序树(初始时是空树)。 插入某个非0整数时&#xff0c;若该整…

算法Day30 餐厅的套餐

餐厅的套餐 Description 假设有一家餐厅&#xff0c;菜单上有n道菜可供选择&#xff0c;现在需要从中选择k道菜组成一份套餐。请设计一个算法&#xff0c;返回所有可能但互不相同的菜品组合。 Input 不同菜品的id各不相同&#xff0c;分别为1,2,3…n,输入内容依次为n和k的值&a…

skynet 中 mongo 模块运作的底层原理解析

文章目录 前言总览全流程图涉及模块关系连接数据库函数调用流程图数据库操作函数调用流程图涉及到的代码文件 建立连接SCRAMSASL 操作数据库结语参考链接 前言 这篇文章总结 skynet 中 mongo 的接入流程&#xff0c;代码解析&#xff0c;读完它相信你对 skynet 中的 mongo 调用…

Python:核心知识点整理大全16-笔记

目录 8.2.3 默认值 8.2.4 等效的函数调用 8.2.5 避免实参错误 8.3 返回值 8.3.1 返回简单值 formatted_name.py 8.3.2 让实参变成可选的 8.3.3 返回字典 往期快速传送门&#x1f446;&#xff08;在文章最后&#xff09;&#xff1a; 8.2.3 默认值 编写函数时&#xff…

Docker镜像构建:深入Dockerfile创建自定义镜像

Docker的强大之处在于其能够通过Dockerfile定义和构建自定义镜像&#xff0c;为应用提供独立、可移植的运行环境。在这篇博客文章中&#xff0c;将深入探讨Docker镜像构建的核心概念&#xff0c;通过更加丰富的示例代码&#xff0c;帮助大家全面理解和掌握构建自定义镜像的技术…

机器学习笔记 - 基于C# + .net framework 4.8的ONNX Runtime进行分类推理

该示例是从官方抄的,演示了如何使用 Onnx Runtime C# API 运行预训练的 ResNet50 v2 ONNX 模型。 我这里的环境基于.net framework 4.8的一个winform项目,主要依赖下面版本的相关库。 Microsoft.Bcl.Numerics.8.0.0 Microsoft.ML.OnnxRuntime.Gpu.1.16.3 SixLabors.ImageShar…

掌握iText:轻松处理PDF文档-高级篇-添加水印

前言 iText作为一个功能强大、灵活且广泛应用的PDF处理工具&#xff0c;在实际项目中发挥着重要作用。通过这些文章&#xff0c;读者可以深入了解如何利用iText进行PDF的创建、编辑、加密和提取文本等操作&#xff0c;为日常开发工作提供了宝贵的参考和指导。 掌握iText&…