python实现形态学建筑物指数MBI提取建筑物及数据获取

前言

    形态学建筑物指数MBI通过建立建筑物的隐式特征和形态学算子之间的关系进行建筑物的提取[1]。

原理

图片

上图源自[2]。

实验数据

简单找了一张小图片:

图片

test.jpg

代码

为了支持遥感图像,读写数据函数都是利用GDAL写的。

import numpy as np
import gdal

#  读取tif数据集
def readTif(fileName, xoff = 0, yoff = 0, data_width = 0, data_height = 0):
    dataset = gdal.Open(fileName)
    if dataset == None:
        print(fileName + "文件无法打开")
    #  栅格矩阵的列数
    width = dataset.RasterXSize 
    #  栅格矩阵的行数
    height = dataset.RasterYSize 
    #  波段数
    bands = dataset.RasterCount 
    #  获取数据
    if(data_width == 0 and data_height == 0):
        data_width = width
        data_height = height
    data = dataset.ReadAsArray(xoff, yoff, data_width, data_height)
    #  获取仿射矩阵信息
    geotrans = dataset.GetGeoTransform()
    #  获取投影信息
    proj = dataset.GetProjection()
    return width, height, bands, data, geotrans, proj

#  保存tif文件函数
def writeTiff(im_data, im_geotrans, im_proj, path):
    if 'int8' in im_data.dtype.name:
        datatype = gdal.GDT_Byte
    elif 'int16' in im_data.dtype.name:
        datatype = gdal.GDT_UInt16
    else:
        datatype = gdal.GDT_Float32
    if len(im_data.shape) == 3:
        im_bands, im_height, im_width = im_data.shape
    elif len(im_data.shape) == 2:
        im_data = np.array([im_data])
        im_bands, im_height, im_width = im_data.shape

    #创建文件
    driver = gdal.GetDriverByName("GTiff")
    dataset = driver.Create(path, int(im_width), int(im_height), int(im_bands), datatype)
    if(dataset!= None):
        dataset.SetGeoTransform(im_geotrans) #写入仿射变换参数
        dataset.SetProjection(im_proj) #写入投影
    for i in range(im_bands):
        dataset.GetRasterBand(i+1).WriteArray(im_data[i])
    del dataset

接下来就是就算MBI,代码注释很详细,也可以对着原理来看。

from skimage.morphology import square, white_tophat
from skimage.transform import rotate

#  计算MBI
#  s_min: 结构元素大小最小值
#  s_max: 结构元素大小最大值
#  delta_s: 颗粒测定的间隔
def CalculationMBI(filePath, MBIPath, s_min, s_max, delta_s):
    #  读取图像的相关信息
    width, height, bands, image, geotrans, proj = readTif(filePath)
    #  多光谱带的最大值对应于具有高反射率的特征->取光谱带最大值作为后续计算数据
    gray = np.max(image, 0)
    #  为消除白帽边缘效应,进行边缘补零
    gray = np.pad(gray, ((s_min, s_min), (s_min, s_min)), 'constant', constant_values=(0, 0))
    #  形态学剖面集合
    MP_MBI_list = []
    #  差分形态学剖面DMP集合
    DMP_MBI_list = []
    
    #  计算形态学剖面
    for i in range(s_min, s_max + 1, 2 * delta_s):
        print("s = ", i)
        #  大小为i×i的单位矩阵
        SE_intermediate = square(i)
        #  只保留中间一行为1,其他设置为0
        SE_intermediate[ : int((i - 1) / 2), :] = 0
        SE_intermediate[int(((i - 1) / 2) + 1) : , :] = 0
        
        #  SE_intermediate表示结构元素,用于设定局部区域的形状和大小
        #  旋转0 45 90 135°
        for angle in range(0, 180, 45):
            SE_intermediate = rotate(SE_intermediate, angle, order = 0, preserve_range = True).astype('uint8')
            #  多角度形态学白帽重构
            MP_MBI = white_tophat(gray, selem = SE_intermediate)
            MP_MBI_list.append(MP_MBI)
            
    #  计算差分形态学剖面DMP
    for j in range(4, len(MP_MBI_list), 1):
        #  差的绝对值
        DMP_MBI = np.absolute(MP_MBI_list[j] - MP_MBI_list[j - 4])
        DMP_MBI_list.append(DMP_MBI)
    
    #  计算MBI
    MBI = np.sum(DMP_MBI_list, axis = 0) / (4 * (((s_max - s_min) / delta_s) + 1))
    #  去除多余边缘结果
    MBI = MBI[s_min : MBI.shape[0] - s_min, s_min : MBI.shape[1] - s_min]
    #  写入文件
    writeTiff(MBI, geotrans, proj, MBIPath)

#  原图像
filePath = r"test.jpg"
#  MBI结果
MBIPath = r"test_mbi.jpg"
#  建筑物提取结果
buildingPath = r"test_building.jpg"
#  结构元素大小最小值
s_min = 3
#  结构元素大小最大值
s_max = 20
#  测定的间隔
delta_s = 1
#  计算MBI
CalculationMBI(filePath, MBIPath, s_min, s_max, delta_s)

图片

test_mbi.jpg

MBI计算出来了以后,我们就要取阈值来提取建筑物了,阈值可以手动设置,也可以用算法自动求出阈值,这里我们采用OTSU算法[3]。

from skimage.filters import threshold_otsu

def BuildingExtraction_otsu(MBIPath, buildingPath):
    width, height, bands, image, geotrans, proj = readTif(MBIPath)
    thresh = threshold_otsu(image) #返回一个阈值
    image[image>thresh] = 255
    image[image<=thresh] = 0
    image = image.astype(np.uint8)
    writeTiff(image, geotrans, proj, buildingPath)

#  otsu自动计算阈值提取建筑物
BuildingExtraction_otsu(MBIPath, buildingPath)

图片

test_building.jpg

目视对照一下的话,感觉效果还不错。

参考

  1. ^Huang X and Zhang L. 2011. A multidirectional and multiscale morphological index for automatic building extraction from multispectral geoeye-1 imagery. Photogrammetric Engineering and Remote Sensing, 77(7), 721-732. [DOI: 10.14358/PERS.77.7.721]

  2. ^魏旭,高小明,岳庆兴,郭正胜.一种结合MBI和SLIC算法的遥感影像建筑物提取方法[J].测绘与空间地理信息,2019,42(10):100-103.

  3. ^otsu(大津算法)-百度百科 https://baike.baidu.com/item/otsu/16252828?fr=aladdin

来源:应用推广部

供稿:技术研发部

编辑:方梅

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/240124.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

静态路由的原理和配置

一.路由器的工作原理 首先我们知道路由器是工作在网络层的&#xff0c;那就是三层设备。网络层的功能主要为&#xff1a;不同网段之间通信、最佳路径选择也就是逻辑地址&#xff08;ip地址&#xff09;寻址、转发数据。 1.路由器是什么 路由器是能将数据包转发到正确的目的地…

【MySQL】MySQL数据库基础--什么是数据库/基本使用/MySQL架构/存储引擎

文章目录 1.什么是数据库2.主流数据库3.基本使用3.1MySQL安装3.2连接服务器3.3服务器管理3.4服务器&#xff0c;数据库&#xff0c;表关系3.5使用案例3.6数据逻辑存储 4.MySQL架构5.SQL分类6.存储引擎6.1什么是存储引擎6.2查看存储引擎6.3存储引擎对比 1.什么是数据库 对于回答…

【vue实战项目】通用管理系统:信息列表,信息的编辑和删除

本文为博主的vue实战小项目系列中的第七篇&#xff0c;很适合后端或者才入门的小伙伴看&#xff0c;一个前端项目从0到1的保姆级教学。前面的内容&#xff1a; 【vue实战项目】通用管理系统&#xff1a;登录页-CSDN博客 【vue实战项目】通用管理系统&#xff1a;封装token操作…

Spring Boot 3 整合 Mybatis-Plus 动态数据源实现多数据源切换

&#x1f680; 作者主页&#xff1a; 有来技术 &#x1f525; 开源项目&#xff1a; youlai-mall &#x1f343; vue3-element-admin &#x1f343; youlai-boot &#x1f33a; 仓库主页&#xff1a; Gitee &#x1f4ab; Github &#x1f4ab; GitCode &#x1f496; 欢迎点赞…

Docker容器:Centos7搭建Docker镜像私服harbor

目录 1、安装docker 1.1、前置条件 1.2、查看当前操作系统的内核版本 1.3、卸载旧版本(可选) 1.4、安装需要的软件包 1.5、设置yum安装源 1.6、查看docker可用版本 1.7、安装docker 1.8、开启docker服务 1.9、安装阿里云镜像加速器 1.10、设置docker开机自启 2、安…

Linux驱动入门 —— LED点灯驱动程序

目录 IMX6ULL 的 GPIO 操作方法 GPIO 操作相关名词 IMX6ULL 的 GPIO 模块结构 GPIO 模块内部 读 GPIO​编辑 写 GPIO​编辑 LED 点灯驱动程序 字符设备驱动程序框架 编写驱动程序的步骤&#xff1a; 先编写驱动程序代码&#xff1a; 再编写测试程序代码&#xff1a;…

神经网络是如何工作的? | 京东云技术团队

作为一名程序员&#xff0c;我们习惯于去了解所使用工具、中间件的底层原理&#xff0c;本文则旨在帮助大家了解AI模型的底层机制&#xff0c;让大家在学习或应用各种大模型时更加得心应手&#xff0c;更加适合没有AI基础的小伙伴们。 一、GPT与神经网络的关系 GPT想必大家已…

理解linux中反向映射与应用

反向映射的作用是根据物理页&#xff0c;找到全部相关进程的vma。 主要有两个结构&#xff0c;anon_vma_chain链表&#xff0c;和 anon_vma->rb_root红黑树 打个不恰当的比喻&#xff1a;可以简单认为&#xff0c;红黑树是用来读的&#xff08;遍历找全部映射的vm_area&am…

web服务器之——www服务器的基本配置

目录 一、www简介 1、什么是www 2、www所用的协议 3、WEB服务器 4、主要数据 5、浏览器 二、 网址及HTTP简介 1、HTTP协议请求的工作流程 三、www服务器的类型(静态网站&#xff08;HTML&#xff09;&#xff0c; 动态网站(jsp python,php,perl)) 1、 仅提供…

python:五种算法(GA、OOA、DBO、SSA、PSO)求解23个测试函数(python代码)

一、五种算法简介 1、遗传算法GA 2、鱼鹰优化算法OOA 3、蜣螂优化算法DBO 4、麻雀搜索算法SSA 5、粒子群优化算法PSO 二、5种算法求解23个函数 &#xff08;1&#xff09;23个函数简介 参考文献&#xff1a; [1] Yao X, Liu Y, Lin G M. Evolutionary programming made…

QT QIFW Windows下制作安装包(一)

一、概述 1、QIFW是一款基于QT框架开发的跨平台安装框架。QIFW是QT Installer FrameWork的缩写&#xff0c;支持Windows、Linux和macos等多种平台。QIFW可以帮助开发者创建自己的安装程序&#xff0c;将它们打包到通用的安装包中&#xff0c;并提供可视化的界面进行安装。 2…

『App自动化测试之Appium基础篇』| Desired Capabilities详解与使用

App自动化测试之Appium基础篇』| Desired Capabilities详解与使用 1 关于appium driver2 安装appium driver3 安装Appium Python Client4 安装测试对象5 获取测试对象信息5.1 使用dumpsys5.2 使用AndroidKiller5.3 使用aapt 6 Capabilities详解6.1 Capabilities介绍6.2 automat…

19-数据结构-查找-散列查找

目录 一、散列查找结构思路图 二、哈希函数 三、解决冲突 1.开放地址法 1.1.线性探测法&#xff08;线性探测再散列法&#xff09; 1.2.平方探测法&#xff08;二次探测再散列&#xff09; 1.3.再散列法&#xff08;双散列法&#xff09; 2.拉链法 2.1简介 四、散列查…

飞天使-linux操作的一些技巧与知识点3-http的工作原理

文章目录 http工作原理nginx的正向代理和反向代理的区别一个小技巧dig 命令巧用 http工作原理 http1.0 协议 使用的是短连接&#xff0c;建立一次tcp连接&#xff0c;发起一次http的请求&#xff0c;结束&#xff0c;tcp断开 http1.1 协议使用的是长连接&#xff0c;建立一次tc…

【ARM Trace32(劳特巴赫) 使用介绍 13 -- Trace32 断点 Break 命令篇】

文章目录 1. Break.Set1.1 TRACE32 Break1.1.1 Break命令控制CPU的暂停1.2 Break.Set 设置断点1.2.1 Trace32 程序断点1.2.2 读写断点1.2.2.1 变量被改写为特定值触发halt1.2.2.2 设定非值触发halt1.2.2.4 变量被特定函数改写触发halt1.2.3 使用C/C++语法设置断点条件1.2.4 使用…

深入理解 SVG:开启向量图形的大门(下)

&#x1f90d; 前端开发工程师&#xff08;主业&#xff09;、技术博主&#xff08;副业&#xff09;、已过CET6 &#x1f368; 阿珊和她的猫_CSDN个人主页 &#x1f560; 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 &#x1f35a; 蓝桥云课签约作者、已在蓝桥云…

AutoCAD输入命令突然显示 未知命令。按 F1查看帮助。

CAD一直好的&#xff0c;突然坏了&#xff0c;不能输入命令了&#xff0c;其他功能正常。输入命令显示“未知命令XXX&#xff0c;按 F1 查看帮助。” 网上说的什么病毒&#xff0c;卸载重装等无效。结果发现输入的字符是全角的&#xff0c;不是半角的&#xff0c;就输入法的问…

C++面试宝典第5题:判断素数

题目 判断一个正整数是否为素数有哪几种方法&#xff0c;每种方法的时间复杂度怎么样。 解析 素数又称质数&#xff0c;是指在大于1的自然数中&#xff0c;除了1和它本身以外&#xff0c;不再有其他因数的自然数。素数只有1和它本身两个正因数&#xff0c;最小的素数是2&#x…

【Vue】router.push用法实现路由跳转

目录 router.push用法 在Login.vue中 在Register.vue中 ​ 上一篇&#xff1a;登录与注册界面的制作 https://blog.csdn.net/m0_67930426/article/details/134895214?spm1001.2014.3001.5502 制作了登录与注册界面&#xff0c;并介绍了相关表单元素即属性的用法 在登录页面…

第三十四周:文献阅读+LSTM学习

目录 摘要 Abstract 文献阅读&#xff1a;综合EMD-LSTM模型在城市排水管网水质预测中的应用 现有问题 提出方法 EMD-LSTM综合模型 研究框架 结论 Long Short-term Memory(长短期记忆) 1. LSTM的结构 2. Multiple-layer LSTM 3.3 LSTM Example 3. GRU LSTM实现PM2…