记录一次chatGPT人机协同实战辅助科研——根据词库自动进行情感分析

有一个Excel中的一列,读取文本判断文本包含积极情感词.txt和消极情感词.txt的个数,分别生成两列统计数据

请将 ‘your_file.xlsx’ 替换为你的Excel文件名,'Your Text Column’替换为包含文本的列名。

这个程序首先读取了积极和消极情感词,并定义了两个函数来统计文本中这些词的数量。然后,它使用这两个函数来创建新的列,并将结果保存为一个新的Excel文件。

# -*- coding:utf-8 -*-f
import pandas as pd

# 读入数据

# 读取Excel文件
file_path = 'chatGPT_analyse_result.xlsx'
df = pd.read_excel(file_path)

# 定义函数来统计文本中出现的词汇数
def count_words(text, word_list):
    count = 0
    for word in word_list:
        if word in text:
            count += 1
    return count

# 读取积极和消极情绪词文件
positive_words_path = '积极情绪词库.txt'  # 请替换为你的积极情绪词文件路径
negative_words_path = '消极情绪词库.txt'  # 请替换为你的消极情绪词文件路径

# 读取积极和消极情绪词文件内容到列表中
with open(positive_words_path, 'r', encoding='utf-8') as file:
    positive_words = [line.strip() for line in file]

with open(negative_words_path, 'r', encoding='utf-8') as file:
    negative_words = [line.strip() for line in file]

# 对每一行文本进行积极和消极情绪词的统计
positive_counts = []
negative_counts = []

for text in df['分析结果']:
    positive_count = count_words(str(text), positive_words)
    negative_count = count_words(str(text), negative_words)
    positive_counts.append(positive_count)
    negative_counts.append(negative_count)

# 将统计结果添加到数据框中
df['积极情绪词个数'] = positive_counts
df['消极情绪词个数'] = negative_counts

# 将结果保存到新的Excel文件中
output_file_path = '分析结果.xlsx'
df.to_excel(output_file_path, index=False)

print("已生成带有情绪词统计的Excel文件。")

发现次数都是0

在这里插入图片描述

调整prompt

还是不匹配 ,接续追问

在这里插入图片描述

成功解决bug:出现了分析结果
在这里插入图片描述
最后代码:

# -*- coding:utf-8 -*-f
import pandas as pd
import jieba
# 读入数据

# 读取Excel文件
file_path = 'chatGPT_analyse_result.xlsx'
df = pd.read_excel(file_path)

# 情绪词列表
positive_words = ['透露', '亲切', '容忍', '听从', '被动', '创新', '发表', '好的', '鼓舞', '赋予', '喜欢', '配合', '聪明', '偏向', '交流', '合理', '猜测', '夸奖', '致力于', '称赞', '不错', '听懂', '安慰', '善于', '爱', '提升', '坚持', '看好', '指引', '劝慰', '舒缓', '减轻', '推导', '愉快', '轻松', '沟通', '有序', '进步', '谢谢', '强烈', '懂', '恰当', '持之以恒', '至关重要', '振奋', '赞成', '妥当', '礼貌', '温暖', '有利于']

negative_words = ['批评', '不对', '抱歉', '薄弱', '不适', '不足', '谴责', '逼迫', '厌烦', '不行', '指责', '负面', '惩罚', '紧张', '责备', '告诫', '挫败', '气馁', '紧迫', '质疑', '不满', '贬低', '忽视', '批判', '疑惑', '反对', '不是', '失败', '催促', '担心', '无礼', '失去', '焦虑', '着急', '退步', '模糊', '放弃', '迷惘', '灰心丧气', '批判性', '禁止', '不当', '犯错', '忽略', '拒绝', '担忧', '不专业', '困难']

# 分词函数
def tokenize(text):
    return jieba.lcut(text)

# 对每一行文本进行分词和积极、消极情绪词的统计
positive_counts = []
negative_counts = []

for text in df['分析结果']:
    words = tokenize(str(text))  # 分词
    positive_count = any(word in positive_words for word in words)
    negative_count = any(word in negative_words for word in words)
    positive_counts.append(1 if positive_count else 0)
    negative_counts.append(1 if negative_count else 0)

# 将统计结果添加到数据框中
df['积极情绪词个数'] = positive_counts
df['消极情绪词个数'] = negative_counts

# 将结果保存到新的Excel文件中
output_file_path = '分析结果.xlsx'
df.to_excel(output_file_path, index=False)

print("已生成带有情绪词统计的Excel文件。")

最后在画个图

转换成分钟

在这里插入图片描述

import pandas as pd

# 读取Excel文件
file_path = 'chatGPT_analyse_result.xlsx'  # 请替换为你的Excel文件路径
df = pd.read_excel(file_path)

# 提取时间列中的分钟和秒钟数据
time_pattern = r'(\d+):(\d+)'
df['分钟'] = df['时间'].str.extract(time_pattern)[0].astype(int) * 60  # 提取分钟并转换为秒钟
df['秒钟'] = df['时间'].str.extract(time_pattern)[1].astype(int)

# 计算总的秒钟数
df['总秒钟数'] = df['分钟'] + df['秒钟']

# 将总秒钟数转换回分钟
df['总分钟数'] = df['总秒钟数'] / 60

# 打印结果或保存到新的Excel文件中
print(df[['分钟', '秒钟', '总秒钟数', '总分钟数']])  # 打印结果
# 或者保存到新的Excel文件中
output_file_path = '处理后的结果.xlsx'

df.to_excel(output_file_path, index=False)
print('ok')

在这里插入图片描述

在这里插入图片描述

import pandas as pd
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus']=False

# 读取Excel文件
file_path = '分析结果.xlsx'  # 请替换为你的Excel文件路径
df = pd.read_excel(file_path)

# 映射积极情绪词个数和消极情绪词个数到1和-1
df['积极情绪映射'] = df['积极情绪词个数'].apply(lambda x: 1)
df['消极情绪映射'] = df['消极情绪词个数'].apply(lambda x: -1)

# 绘制折线图
plt.figure(figsize=(10, 6))  # 设置图形大小

# 以总分钟数为 x 轴,积极情绪映射和消极情绪映射为 y 轴绘制折线图
plt.plot(df['总分钟数'], df['积极情绪映射'], label='积极情绪词个数', marker='o')  # marker='o' 表示使用圆点标记数据点
plt.plot(df['总分钟数'], df['消极情绪映射'], label='消极情绪词个数', marker='x')  # marker='x' 表示使用X标记数据点

plt.xlabel('总分钟数')  # x 轴标签
plt.ylabel('情绪')  # y 轴标签
plt.title('课堂时间与情绪变化折线图')  # 图表标题

plt.legend()  # 显示图例
plt.grid(True)  # 显示网格线

plt.ylim(-1.5, 1.5)  # 设置 y 轴显示范围

plt.tight_layout()  # 调整布局使标签等不会被裁剪
plt.show()  # 显示图形

结果如图:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/240078.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

(第68天)DBCA 克隆 PDB

介绍 在前面课程我们讲过使用 DBCA 创建数据库以及搭建 DataGuard 等功能,在多租户这章节,要讲下如何使用 DBCA 克隆 PDB。 18C 开始支持使用 DBCA 在本地 CDB 中克隆 PDB19C 升级支持使用 DBCA 克隆 PDB 到远端 CDB 中19C 升级支持使用 DBCA 重定向迁移 PDB 到远端 CDB 中本…

2023/12/12作业

思维导图 作业: 成果图 代码 #include "widget.h" #include "ui_widget.h" Widget::Widget(QWidget *parent) : QWidget(parent) , ui(new Ui::Widget) { speechernew QTextToSpeech(this); ui->setupUi(this); //一直获取当前时间 idst…

海思越影系列3516DV500/3519DV500/3519AV200/SD3403平台的AI一体化工业相机设计思路

随着工业自动化的发展,生产线对机器视觉的数量要求越来越多,由于数量的增加,视觉系统占的空间也越来越大,给生产线的布局带来困扰。 另一方面随着视觉SOC的发展,越来越多的视觉SOC都逐渐带有一定的算力,一体…

AI全栈大模型工程师(二十八)如何做好算法备案

互联网信息服务算法 什么情况下要备案? 对于B2B业务,不需要备案。 但在B2C领域,一切要视具体情况而定。 如果我们自主训练大型模型,这是必要的。 但如果是基于第三方模型提供的服务,建议选择那些已获得备案并且具有较大…

DevOps - Spug 自动化运维平台

关于Spug 官网:https://spug.cc/ Spug:麻雀,麻雀虽小,五脏俱全。 Spug是面向中小型企业设计的轻量级无Agent的自动化运维平台,整合了主机管理、主机批量执行、主机在线终端、文件在线上传下载、应用发布部署、在线任…

[Angular] 笔记1:开发设置 , 双向绑定

1 设置开发环境 1.1 安装 node 下载 node,因为要使用 npm 工具,教程中使用 Angualr 14, 最新版 node 20 用不了,安装 node 16 就可以。 1.2 安装 Angular CLI Angular CLI 是用于创建 Angular 工程的工具集,使用如下命令&…

redis的深度理解

上篇博客我们说到了redis的基本概念和基本操作,本篇我们就更深入去了解一些redis的操作和概念,我们就从red的主从同步、redis哨兵模式和redis集群三个方面来了解redis数据库 一、主从同步 像MySQL一样,redis是支持主从同步的,而…

面试 JVM 八股文五问五答第二期

面试 JVM 八股文五问五答第二期 作者:程序员小白条,个人博客 相信看了本文后,对你的面试是有一定帮助的! ⭐点赞⭐收藏⭐不迷路!⭐ 1.JVM运行时数据区有几部分?(JVM内存布局)虚拟机栈和本地方…

nodejs微信小程序+python+PHP社区居民信息管理及数据分析系统-计算机毕业设计推荐django

目 录 摘 要 I ABSTRACT II 目 录 II 第1章 绪论 1 1.1背景及意义 1 1.2 国内外研究概况 1 1.3 研究的内容 1 第2章 相关技术 3 2.1 nodejs简介 4 2.2 express框架介绍 6 2.4 MySQL数据库 4 第3章 系统分析 5 3.1 需求分析 5 3.2 系统可行性分析 5 3.2.1技术可行性:…

SQL数列

SQL数列 1、数列概述2、SQL数列2.1、简单递增序列2.2、等差数列2.3、等比数列3、SQL数列的应用3.1、连续问题3.2、多维分析1、数列概述 数列是最常见的数据形式之一,实际数据开发场景中遇到的基本都是有限数列。常见的数列例如:简单递增序列、等差数列、等比数列等 如何充分…

汽车IVI中控开发入门及进阶(十一):ALSA音频

前言 汽车中控也被称为车机、车载多媒体、车载娱乐等,其中音频视频是非常重要的部分,音频比如播放各种格式的音乐文件、播放蓝牙接口的音乐、播放U盘或TF卡中的音频文件,如果有视频文件也可以放出音频,看起来很简单,在windows下音乐播放器很多,直接打开文件就能播放各…

记录 | linux安装Manim

linux 安装 Manim sudo apt update sudo apt install build-essential python3-dev libcairo2-dev libpango1.0-dev ffmpeg sudo apt install xdg-utilsconda create manim_py39 python3.9 conda activate manim_py39pip install manim安装好环境后来测试一个例程,…

多维时序 | MATLAB实现BWO-CNN-BiGRU-Multihead-Attention多头注意力机制多变量时间序列预测

多维时序 | MATLAB实现BWO-CNN-BiGRU-Multihead-Attention多头注意力机制多变量时间序列预测 目录 多维时序 | MATLAB实现BWO-CNN-BiGRU-Multihead-Attention多头注意力机制多变量时间序列预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 MATLAB实现BWO-CNN-B…

向ChatGPT提特殊问题,可提取原始训练数据!

随着ChatGPT等模型的参数越来越大,预训练数据也呈指数级增长。谷歌DeepMind、华盛顿大学、康奈尔大学等研究人员发现,无论是开源还是闭源模型,在训练过程中皆能记住一定数量的原始训练数据样本。 如果使用特定的恶意攻击,便能轻松地从模型中…

Pytorch中Group Normalization的具体实现

Group Normalization (GN) 是一种用于深度神经网络中的归一化方法,它将每个样本划分为小组,并在每个小组内进行标准化。与批归一化(Batch Normalization)不同,Group Normalization 不依赖于小批量数据,因此…

论文阅读——ScanQA

ScanQA: 3D Question Answering for Spatial Scene Understanding 输入:点云P和问题Q,输出:答案A 点云p由三维坐标点组成。本文模型使用额外的点云特征:点云高度、颜色、法线和多视图图像特征,这些特征将 2D 外观特征投…

SD-WAN架构:优化连接以提升性能

SD-WAN架构主要分为三种类型,分别为本地架构、支持云的架构、支持云的骨干架构。每一种架构都基于它们利用广域网(WAN)的方式而有其独特的优势。本文将对三种SD-WAN架构进行简要介绍。 SD-WAN本地架构 SD-WAN本地架构是在现场使用SD-WAN盒或…

MATLAB代码:分布式电源接入对配电网影响分析

微♥关注“电击小子程高兴的MATLAB小屋”获取专属优惠 关键词:分布式电源 配电网 评估 仿真平台:MATLAB 主要内容:代码主要做的是分布式电源接入场景下对配电网运行影响的分析,其中,可以自己设置分布式电源接入…

归并排序的实现

一.思想 归并排序是一种基于分治思想的经典排序算法。其主要思想可以总结为以下几个步骤: 分解(Divide): 将原始序列划分为若干子序列,直到每个子序列包含一个或零个元素,即认为这些子序列是有序的。 解决…

Xcode编译速度慢是什么原因?如何提高编译速度?

Hello各位伙伴们好,我是咕噜铁蛋!作为一个开发者,我们都希望能够高效地开发应用程序,而编译速度是影响开发效率的重要因素之一。然而,有时候我们会发现在使用 Xcode 进行开发时,编译速度非常慢,…