redis的深度理解

上篇博客我们说到了redis的基本概念和基本操作,本篇我们就更深入去了解一些redis的操作和概念,我们就从red的主从同步、redis哨兵模式和redis集群三个方面来了解redis数据库

一、主从同步

像MySQL一样,redis是支持主从同步的,而且也支持一主多从以及多级从结构。 主从结构,一是为了纯粹的冗余备份,二是为了提升读性能,比如很消耗性能的SORT就可以由从服务器来承担。 redis的主从同步是异步进行的。

1.主从同步原理

从服务器会向主服务器发出SYNC指令,当主服务器接到此命令后,就会调用BGSAVE指令来创建一个子进程专门进行数据持久化工作,也就是将主服务器的数据写入RDB文件中。在数据持久化期间,主服务器将执行的写指令都缓存在内存中。
在BGSAVE指令执行完成后,主服务器会将持久化好的RDB文件发送给从服务器,从服务器接到此文件后会将其存储到磁盘上,然后再将其读取到内存中。这个动作完成后,主服务器会将这段时间缓存的写指令再以redis协议的格式发送给从服务器。
另外,要说的一点是,即使有多个从服务器同时发来SYNC指令,主服务器也只会执行一次BGSAVE,然后把持久化好的RDB文件发给多个从服务器。

2.部署主从同步(一主两从)

部署环境

192.168.91.5       redis-master
192.168.91.149     redis-slave-1
192.168.91.150     redis-slave-2

关闭防火墙和selinux
systemctl stop firewalld         
systemctl disable firewalld       #关闭防火墙
setenforce 0      #关闭selinux

 修改master配置文件

# vim /usr/local/redis/redis.conf

bind 0.0.0.0
protected-mode no

修改slave配置文件

#vim /usr/local/redis/redis.conf

bind 0.0.0.0
protected-mode no
replicaof 192.168.91.5

 重启redis服务,再netstat -nlpt查看一下端口即可

二、哨兵模式

哨兵模式是用于监控redis主从复制中Master状态的工具,所以我们的哨兵模式都是基于主从复制的基础去做的

1.作用

检测Master状态,如果Master异常,则会进行Master-Slave切换,将其中一个Slave作为Master,将之前的Master作为Slave, Master-Slave切换后,sentinel的监控目标会随之调换 

2.工作模式

1):每个Sentinel以每秒钟一次的频率向它所知的Master,Slave以及其他 Sentinel 实例发送一个 PING 命令 

2):如果一个实例(instance)距离最后一次有效回复 PING 命令的时间超过 down-after-milliseconds 选项所指定的值,则这个实例会被 Sentinel 标记为主观下线。 

3):如果一个Master被标记为主观下线,则正在监视这个Master的所有 Sentinel 要以每秒一次的频率确认Master的确进入了主观下线状态。 

4):当有足够数量的 Sentinel(大于等于配置文件指定的值)在指定的时间范围内确认Master的确进入了主观下线状态, 则Master会被标记为客观下线 

ps:quorum 的值一般设置为哨兵个数的二分之一加1,例如 3 个哨兵就设置 2。

3.主观下线和客观下线

主观下线:Subjectively Down,简称 SDOWN,指的是当前 Sentinel 实例对某个redis服务器做出的下线判断。 
客观下线:Objectively Down, 简称 ODOWN,指的是多个 Sentinel(哨兵) 实例在对Master Server做出 SDOWN  判断,并且通过 SENTINEL is-master-down-by-addr 命令互相交流之后,得出的Master  Server下线判断,然后开启failover(故障转移)

4.配置哨兵模式

vim /usr/local/redis/sentinel.conf

daemonize yes                                #设置哨兵放后台运行
logfile "/var/log/sentinel.log"                    #设置哨兵日志
sentinel monitor mymaster 192.168.91.5 6379 2        #当集群中有2个sentinel认为master死了时,才能真正认为该master已经不可用了。 (slave上面写的是master的ip,master写自己ip)
protected-mode no             #将加密保护关闭
sentinel down-after-milliseconds mymaster 3000          #单位毫秒
sentinel failover-timeout mymaster 10000           #若sentinel在该配置值内未能完成failover(故障转移)操作(即故障时master/slave自动切换),则认为本次failover失败。

[root@redis-master redis]# ./src/redis-sentinel sentinel.conf   #开启哨兵模式

三、redis集群

1.使用redis集群的原因

1.首先Redis单实例主要有单点,容量有限,流量压力上限的问题。
Redis单点故障,可以通过主从复制replication,和自动故障转移sentinel哨兵机制。但Redis单Master实例提供读写服务,仍然有容量和压力问题。

2.并发问题
redis官方声称可以达到 10万/每秒,每秒执行10万条命令
假如业务需要每秒100万的命令执行呢?
解决方案如下
正确的应该是考虑分布式,加机器,把数据分到不同的位置,分摊集中式的压力。那么一堆机器做一件事.还需要一定的机制保证数据分区,并且数据在各个主Master节点间不能混乱。

总结:
redis cluster:主要是针对海量数据+高并发+高可用的场景,海量数据,如果你的数据量很大,那么建议就用redis cluster

2.redis集群特点

1.所有的redis节点彼此互联(PING-PONG机制)。
2.客户端与redis节点直连,不需要中间proxy层.客户端不需要连接集群所有节点,连接集群中任何一个可用节点即可。
3.节点的fail是通过集群中超过半数的节点检测失效时才生效。
4.Redis-Cluster采用无中心结构,每个节点保存数据和整个集群状态,每个节点都和其他所有节点连接。

3.数据分布存储原理

Redis 集群使用数据分片来实现:Redis 集群中内置了 16384 个哈希槽,当需要在 Redis 集群中放置一个 key-value 时,redis 先对 key 使用 crc16 算法算出一个结果,然后把结果对 16384 求余数(集群使用公式 CRC16(key) % 16384),这样每个key 都会对应一个编号在 0-16384 之间的哈希槽,那么redis就会把这个key 分配到对应范围的节点上了。同样,当连接三个节点任何一个节点想获取这个key时,也会这样的算法,然后内部跳转到存放这个key节点上获取数据。

4.集群部署

准备环境 

1.准备三机器,关闭防火墙和selinux
2.制作解析并相互做解析。
注:规划架构两种方案,一种是单机多实例,这里我们采用多机器部署:
三台机器,每台机器上面两个redis实例,一个master一个slave,第一列做主库,第二列做备库
#记得选出控制节点

redis-cluster1 192.168.91.5   7000、7001
redis-cluster2 192.168.91.149   7002、7003
redis-cluster3 192.168.91.150   7004、7005

安装redis(三台机器都需要操作)

yum -y install gcc automake autoconf libtool make    #安装编译工具
wget https://download.redis.io/releases/redis-6.2.0.tar.gz      #下载
tar xzvf redis-6.2.0.tar.gz -C /usr/local        #解压
mv /usr/local/redis-6.2.0 /usr/local/redis        #改名
cd /usr/local/redis
make                      #编译
mkdir /usr/local/redis/data        #创建存放数据的目录

创建节点目录:按照规划在每台redis节点的安装目录中创建对应的目录(以端口号命名)

[root@redis-cluster1 redis]# pwd
/usr/local/redis

[root@redis-cluster1 redis]# mkdir cluster #创建集群目录
[root@redis-cluster1 redis]# cd cluster/
[root@redis-cluster1 cluster]# mkdir 7000 7001 #创建节点目录

[root@redis-cluster2 redis]# mkdir cluster
[root@redis-cluster2 redis]# cd cluster/
[root@redis-cluster2 cluster]# mkdir 7002 7003

[root@redis-cluster3 redis]# mkdir cluster
[root@redis-cluster3 redis]# cd cluster/
[root@redis-cluster3 cluster]# mkdir 7004 7005

拷贝配置文件到节点目录中

[root@redis-cluster1 cluster]# cp /data/redis/redis.conf 7000/
[root@redis-cluster1 cluster]# cp /data/redis/redis.conf 7001/

[root@redis-cluster2 cluster]# cp /data/redis/redis.conf 7002/
[root@redis-cluster2 cluster]# cp /data/redis/redis.conf 7003/

[root@redis-cluster3 cluster]# cp /data/redis/redis.conf 7004/
[root@redis-cluster3 cluster]# cp /data/redis/redis.conf 7005/

修改集群redis配置文件。(主要是端口、ip、pid文件,三台机器相同操作)

[root@redis-cluster1 7000]# vim redis.conf 

bind 192.168.116.172               #每个实例的配置文件修改为对应节点的ip地址
port 7000                    #监听端口,运行多个实例时,需要指定规划的每个实例不同的端口号
daemonize yes #redis后台运行
pidfile /var/run/redis_7000.pid           #pid文件,运行多个实例时,需要指定不同的pid文件
logfile /var/log/redis_7000.log           #日志文件位置,运行多实例时,需要将文件修改的不同。
dir /data/redis/data            #存放数据的目录
appendonly yes           #开启AOF持久化,redis会把所接收到的每一次写操作请求都追加到appendonly.aof文件中,当redis重新启动时,会从该文件恢复出之前的状态。
appendfilename "appendonly.aof"           #AOF文件名称
appendfsync everysec        #表示对写操作进行累积,每秒同步一次

以下为打开注释并修改
cluster-enabled yes #启用集群
cluster-config-file nodes-7000.conf                 #集群配置文件,由redis自动更新,不需要手动配置,运行多实例时请注修改为对应端口
cluster-node-timeout 5000             #单位毫秒。集群节点超时时间,即集群中主从节点断开连接时间阈值,超过该值则认为主节点不可以,从节点将有可能转为master
cluster-replica-validity-factor 10               #在进行故障转移的时候全部slave都会请求申请为master,但是有些slave可能与master断开连接一段时间了导致数据过于陈旧,不应该被提升为master。该参数就是用来判断slave节点与master断线的时间是否过长。
cluster-migration-barrier 1         #一个主机将保持连接的最小数量的从机,以便另一个从机迁移到不再被任何从机覆盖的主机
cluster-require-full-coverage yes     #集群中的所有slot(16384个)全部覆盖,才能提供服务

注:所有节点配置文件全部修改切记需要修改的ip、端口、pid文件...避免冲突。确保所有机器都修改。

启动三台机器上面的每个节点

[root@redis-cluster1 src]# ./redis-server ../cluster/7000/redis.conf 
[root@redis-cluster1 src]# ./redis-server ../cluster/7001/redis.conf

[root@redis-cluster2 7003]# cd /data/redis/src/
[root@redis-cluster2 src]# ./redis-server ../cluster/7002/redis.conf 
[root@redis-cluster2 src]# ./redis-server ../cluster/7003/redis.conf

[root@redis-cluster3 7005]# cd /data/redis/src/
[root@redis-cluster3 src]# ./redis-server ../cluster/7004/redis.conf 
[root@redis-cluster3 src]# ./redis-server ../cluster/7005/redis.conf

查看端口

netsata -lnpt                   #查看端口

查看到这些信息之后,就说明我们的redis集群搭建成功了

四、总结redis在运维方面的经典问题

一、如何解决Redis,mysql双写一致性?
1.最经典的缓存+数据库读写的模式:
读的时候,先读缓存,缓存没有的话,就读数据库,然后取出数据后放入缓存,同时返回响应。
更新的时候,先更新数据库,然后再删除缓存。
2.给缓存设置过期时间,这种方案下,可以对存入缓存的数据设置过期时间,所有的写操作以数据库为准,也就是说如果数据库写成功,缓存更新失败,那么只要到达过期时间,则后面的读请求自然会从数据库中读取新值然后回填缓存。

二、缓存雪崩
数据未加载到缓存中,或者缓存同一时间大面积的失效,从而导致所有请求都去查数据库,导致数据库CPU和内存负载过高,甚至宕机。

产生雪崩的简单过程:
1、redis集群大面积故障
2、缓存失效,但依然大量请求访问缓存服务redis
3、redis大量失效后,大量请求转向到mysql数据库,mysql的调用量暴增,很快就扛不住了,甚至直接宕机
4、由于大量的应用服务依赖mysql和redis的服务,这个时候很快会演变成各服务器集群的雪崩,最后网站彻底崩溃。

解决问题:
1.缓存的高可用性
缓存层设计成高可用,防止缓存大面积故障。即使个别节点、个别机器、甚至是机房宕掉,依然可以提供服务,例如 Redis Sentinel 和 Redis Cluster 都实现了高可用。
2.缓存降级
可以利用ehcache等本地缓存(暂时支持),主要还是对源服务访问进行限流、资源隔离(熔断)、降级等。
当访问量剧增、服务出现问题仍然需要保证服务还是可用的。系统可以根据一些关键数据进行自动降级,也可以配置开关实现人工降级,这里会涉及到运维的配合。
降级的最终目的是保证核心服务可用,即使是有损的。
在进行降级之前要对系统进行梳理,比如:哪些业务是核心(必须保证),哪些业务可以容许暂时不提供服务(利用静态页面替换)等,以及配合服务器核心指标,来后设置整体。
3.Redis备份和快速预热
1)Redis数据备份和恢复
2)快速缓存预热
4.提前演练
最后,建议还是在项目上线前,演练缓存层宕掉后,应用以及后端的负载情况以及可能出现的问题,对高可用提前预演,提前发现问题。

三、缓存穿透
缓存穿透是指查询一个一不存在的数据。例如:从缓存redis没有命中,需要从mysql数据库查询,查不到数据则不写入缓存,这将导致这个不存在的数据每次请求都要到数据库去查询,造成缓存穿透。

解决问题:
如果查询数据库也为空,直接设置一个默认值存放到缓存,这样第二次到缓冲中获取就有值了,而不会继续访问数据库。设置一个过期时间或者当有值的时候将缓存中的值替换掉即可。

四、redis有哪些好处
(1) 速度快,因为数据存在内存中.
(2) 支持丰富数据类型,支持string,list,set,sorted set,hash
(3) 支持事务,操作都是原子性,所谓的原子性就是对数据的更改要么全部执行,要么全部不执行
(4) 丰富的特性:可用于缓存,消息,按key设置过期时间,过期后将会自动删除
redis相比memcached有哪些优势
(1) memcached所有的值均是简单的字符串,redis作为其替代者,支持更为丰富的数据类型
(2) redis可以持久化其数据
redis常见性能问题和解决方案
(1) Master最好不要做任何持久化工作,如RDB内存快照和AOF日志文件
(2) 如果数据比较重要,某个Slave开启AOF备份数据,策略设置为每秒同步一次
(3) 为了主从复制的速度和连接的稳定性,Master和Slave最好在同一个局域网内
(4) 尽量避免在压力很大的主库上增加从库

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/240071.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

面试 JVM 八股文五问五答第二期

面试 JVM 八股文五问五答第二期 作者:程序员小白条,个人博客 相信看了本文后,对你的面试是有一定帮助的! ⭐点赞⭐收藏⭐不迷路!⭐ 1.JVM运行时数据区有几部分?(JVM内存布局)虚拟机栈和本地方…

nodejs微信小程序+python+PHP社区居民信息管理及数据分析系统-计算机毕业设计推荐django

目 录 摘 要 I ABSTRACT II 目 录 II 第1章 绪论 1 1.1背景及意义 1 1.2 国内外研究概况 1 1.3 研究的内容 1 第2章 相关技术 3 2.1 nodejs简介 4 2.2 express框架介绍 6 2.4 MySQL数据库 4 第3章 系统分析 5 3.1 需求分析 5 3.2 系统可行性分析 5 3.2.1技术可行性:…

SQL数列

SQL数列 1、数列概述2、SQL数列2.1、简单递增序列2.2、等差数列2.3、等比数列3、SQL数列的应用3.1、连续问题3.2、多维分析1、数列概述 数列是最常见的数据形式之一,实际数据开发场景中遇到的基本都是有限数列。常见的数列例如:简单递增序列、等差数列、等比数列等 如何充分…

汽车IVI中控开发入门及进阶(十一):ALSA音频

前言 汽车中控也被称为车机、车载多媒体、车载娱乐等,其中音频视频是非常重要的部分,音频比如播放各种格式的音乐文件、播放蓝牙接口的音乐、播放U盘或TF卡中的音频文件,如果有视频文件也可以放出音频,看起来很简单,在windows下音乐播放器很多,直接打开文件就能播放各…

记录 | linux安装Manim

linux 安装 Manim sudo apt update sudo apt install build-essential python3-dev libcairo2-dev libpango1.0-dev ffmpeg sudo apt install xdg-utilsconda create manim_py39 python3.9 conda activate manim_py39pip install manim安装好环境后来测试一个例程,…

多维时序 | MATLAB实现BWO-CNN-BiGRU-Multihead-Attention多头注意力机制多变量时间序列预测

多维时序 | MATLAB实现BWO-CNN-BiGRU-Multihead-Attention多头注意力机制多变量时间序列预测 目录 多维时序 | MATLAB实现BWO-CNN-BiGRU-Multihead-Attention多头注意力机制多变量时间序列预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 MATLAB实现BWO-CNN-B…

向ChatGPT提特殊问题,可提取原始训练数据!

随着ChatGPT等模型的参数越来越大,预训练数据也呈指数级增长。谷歌DeepMind、华盛顿大学、康奈尔大学等研究人员发现,无论是开源还是闭源模型,在训练过程中皆能记住一定数量的原始训练数据样本。 如果使用特定的恶意攻击,便能轻松地从模型中…

Pytorch中Group Normalization的具体实现

Group Normalization (GN) 是一种用于深度神经网络中的归一化方法,它将每个样本划分为小组,并在每个小组内进行标准化。与批归一化(Batch Normalization)不同,Group Normalization 不依赖于小批量数据,因此…

论文阅读——ScanQA

ScanQA: 3D Question Answering for Spatial Scene Understanding 输入:点云P和问题Q,输出:答案A 点云p由三维坐标点组成。本文模型使用额外的点云特征:点云高度、颜色、法线和多视图图像特征,这些特征将 2D 外观特征投…

SD-WAN架构:优化连接以提升性能

SD-WAN架构主要分为三种类型,分别为本地架构、支持云的架构、支持云的骨干架构。每一种架构都基于它们利用广域网(WAN)的方式而有其独特的优势。本文将对三种SD-WAN架构进行简要介绍。 SD-WAN本地架构 SD-WAN本地架构是在现场使用SD-WAN盒或…

MATLAB代码:分布式电源接入对配电网影响分析

微♥关注“电击小子程高兴的MATLAB小屋”获取专属优惠 关键词:分布式电源 配电网 评估 仿真平台:MATLAB 主要内容:代码主要做的是分布式电源接入场景下对配电网运行影响的分析,其中,可以自己设置分布式电源接入…

归并排序的实现

一.思想 归并排序是一种基于分治思想的经典排序算法。其主要思想可以总结为以下几个步骤: 分解(Divide): 将原始序列划分为若干子序列,直到每个子序列包含一个或零个元素,即认为这些子序列是有序的。 解决…

Xcode编译速度慢是什么原因?如何提高编译速度?

Hello各位伙伴们好,我是咕噜铁蛋!作为一个开发者,我们都希望能够高效地开发应用程序,而编译速度是影响开发效率的重要因素之一。然而,有时候我们会发现在使用 Xcode 进行开发时,编译速度非常慢,…

beebox靶场A3 中等级别 xss通关教程

特别注意,低级和中级的差别在于中级使用了一些函数进行了过滤或转义字符 例如 addslashes() 函数返回在预定义字符之前添加反斜杠的字符串。 预定义字符是: 单引号()双引号(")反斜杠(\&…

国内安卓、iOS在选择广告变现平台上有哪些不同?

流量作为广告变现的基础,如何合理利用流量,发挥其最大价值,是每个媒体都会面临的问题。售卖流量,可以通过聚合SDK进行分发售卖,广告分层需要根据产品本身的表现效果进行调整,不同广告平台在不同的应用里面表…

怎么让gpt帮忙改文章 (1) 快码论文

大家好,今天来聊聊怎么让gpt帮忙改文章 (1),希望能给大家提供一点参考。 以下是针对论文重复率高的情况,提供一些修改建议和技巧: 怎么让GPT帮忙改文章 一、背景介绍 随着人工智能的发展,自然语言处理技术已经成为了许…

BeautifulSoup学习

前期准备&#xff1a; pip install bs4 pip install lxml bs解析器 从上面的表格可以看出&#xff0c;lxml解析器可以解析HTML和XML文档&#xff0c;并且速度快&#xff0c;容错能力强&#xff0c;所有推荐使用它。 节点选择器 获取名称 soup BeautifulSoup(<b class&…

【Spark精讲】Spark作业执行原理

基本流程 用户编写的Spark应用程序最开始都要初始化SparkContext。 用户编写的应用程序中&#xff0c;每执行一个action操作&#xff0c;就会触发一个job的执行&#xff0c;一个应用程序中可能会生成多个job执行。一个job如果存在宽依赖&#xff0c;会将shuffle前后划分成两个…

得帆云为玉柴打造CRM售后服务管理系统,实现服务全过程管理|基于得帆云低代码的CRM案例系列

广西玉柴机器股份有限公司 广西玉柴机器股份有限公司始建于1992年&#xff0c;是国内行业首家赴境外上市的中外合资企业&#xff0c;产品远销亚欧美非等180多个国家和地区。公司总部设在广西玉林市&#xff0c;下辖11家子公司&#xff0c;生产基地布局广西、江苏、安徽、山东等…

云服务器部署可视化Docker私有仓库(Ubuntu)

这里测试的机器为ubuntu22.04 一、环境安装 docker安装就不赘述了 先升级&#xff0c;再从官方仓库安装docker compose apt update apt upgrade apt install docker-compose二、部署私有仓库UI Docker提供了一个叫registry的镜像&#xff0c;给大家搭建私有仓库&#xff0c…