Redis生产实战-热key、大key解决方案、数据库与缓存最终一致性解决方案

生产环境中热 key 处理

热 key 问题就是某一瞬间可能某条内容特别火爆,大量的请求去访问这个数据,那么这样的 key 就是热 key,往往这样的 key 也是存储在了一个 redis 节点中,对该节点压力很大

那么对于热 key 的处理就是通过热 key 探测系统对热 key 进行计数,一旦发现了热 key,就将热 key 在 jvm 本地缓存中再存储一份,那么当再有大量请求来读取时,就直接在应用的 jvm 缓存中读取到直接返回了,不会再将压力给到同一个 redis 节点中了,如下图:

在这里插入图片描述

京东开源了高性能热 key 探测中间件:JD-hotkey,可以实时探测出系统的热数据,生产环境中可以基于 JD-hotkey 来解决热 key 的问题

生产环境中大 key 监控和切分处理方案

大 key 问题是指在 Redis 中某一个 key 所存储的 value 值特别大,几个 mb 或者几十 mb,那么如果频繁读取大 key,就会导致大量占用网络带宽,影响其他网络请求

对于大 key 会进行特殊的切片处理,并且要对大 key 进行监控,如果说发现超过 1mb 的大 key,则进行报警,并且自动处理,将这个大 key 拆成多个 k-v 进行存储,比如将 big-key 拆分为 —> big-key01,big-key02 ...

那么大 key 的解决方案如下:

  • 通过 crontab 定时调度 shell 脚本,每天凌晨通过 rdbtools 工具解析 Redis 的 rdb 文件,过滤 rdb 文件中的大 key 导出为 csv 文件,然后使用 SQL 导入 csv 文件存储到 MySQL 中的表 redis_large_key_log
  • 使用 canal 监听 MySQL 的 redis_large_key_log 表的 binlog 日志,将增量数据发送到 RocketMQ 中(这里该表的增量数据就是解析出来的大 key,将大 key 的数据发送到 MQ 中,由 MQ 消费者来决定如何对这些大 key 进行处理)
  • 在 MQ 的消费端可以通过一个大 key 的处理服务来对大 key 进行切分,分为多个 k-v 存储在 Redis 中

那么在读取大 key 的时候,需要判断该 key 是否是大 key,如果是的话,需要对多个 k-v 的结果进行拼接并返回

数据库与缓存最终一致性解决方案

如果不采用更新数据时双写来保证数据库与缓存的一致性的话,可以通过 canal + RocketMQ 来实现数据库与缓存的最终一致性,对于数据直接更新 DB,通过 canal 监控 MySQL 的 binlog 日志,并且发送到 RocketMQ 中,MQ 的消费者对数据进行消费并解析 binlog,过滤掉非增删改的 binlog,那么解析 binlog 数据之后,就可以知道对 MySQL 中的哪张表进行 增删改 操作了,那么接下来我们只需要拿到这张表在 Redis 中存储的 key,再从 Redis 中删除旧的缓存即可,那么怎么取到这张表在 Redis 中存储的 key 呢?

可以我们自己来进行配置,比如说监控 sku_info 表的 binlog,那么在 MQ 的消费端解析 binlog 之后,就知道是对 sku_info 表进行了增删改的操作,那么假如 Redis 中存储了 sku 的详情信息,key 为 sku_info:{skuId},那么我们就可以在一个地方(可以在配置文件中,也可以在枚举类中进行配置)对这个信息进行配置:

// 配置下边这三个信息
tableName = "sku_info"; // 表示对哪个表进行最终一致性
cacheKey = "sku_info:"; // 表示缓存前缀
cacheField = "skuId"; // 缓存前缀后拼接的唯一标识

// data 是解析 binlog 日志后拿到的 key-value 值,data.get("skuId") 就是获取这一条数据的 skuId 属性值
// 如下就是最后拿到的 Redis 的 key
redisKey = cacheKey + data.get(cacheField)

那么整体的流程图如下:

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/239947.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

深入探索 Spring Boot:简化开发,加速部署的全方位利器

目录 导言 1. 自动配置(Auto-Configuration) 2. 起步依赖(Starter Dependencies) 3. 嵌入式 Web 服务器 4. Actuator 5. 外部化配置 6. 简化的安全性配置 7. Spring Boot CLI 8. Spring Boot DevTools 导言 在当今软件开…

【华为数据之道学习笔记】4-2信息架构原则:建立企业层面的共同行为准则

信息架构承载了企业如何管理数据资产的方法,需要从整个企业 层面制订统一的原则,这些原则不仅是对数据专业人员的要求,也是对业务的要求,因为业务才是真正的数据Owner。所以,公司所有业务部门都应该共同遵从信息架构原…

学习pytorch20 pytorch完整的模型验证套路

pytorch完整的模型验证套路 使用非数据集的测试数据,测试训练好模型的效果代码预测结果解决报错 B站小土堆pytorch学习视频 https://www.bilibili.com/video/BV1hE411t7RN/?p32&spm_id_frompageDriver&vd_source9607a6d9d829b667f8f0ccaaaa142fcb 使用非数…

postman接口测试之Postman配置环境变量和全局变量

前言  我们在测试的过程中,遇到最多的问题也可以是环境的问题了吧,今天开发用了这个测试环境,明天又换了另一个测试环境,这样对于我们测试非常的麻烦,特别最接口的时候需要来回的输入环境地址比较麻烦,今天…

基于Python+WaveNet+MFCC+Tensorflow智能方言分类—深度学习算法应用(含全部工程源码)(四)

目录 前言引言总体设计系统整体结构图系统流程图 运行环境模块实现1. 数据预处理2. 模型构建3. 模型训练及保存4. 模型生成 系统测试1. 训练准确率2. 测试效果 相关其它博客工程源代码下载其它资料下载 前言 博主前段时间发布了一篇有关方言识别和分类模型训练的博客&#xff…

动态规划学习——通符串匹配,正则表达式

目录 ​编辑 一,通符串匹配 1.题目 2.题目接口 3,解题思路及其代码 二,正则表达 1.题目 2.题目接口 3.解题思路及其代码 三,交错字符串 1.题目 2,题目接口 3.解题思路及其代码 一,通符串匹配 1…

基于Python+WaveNet+MFCC+Tensorflow智能方言分类—深度学习算法应用(含全部工程源码)(三)

目录 前言引言总体设计系统整体结构图系统流程图 运行环境模块实现1. 数据预处理2. 模型构建1)定义模型结构2)优化损失函数 3. 模型训练及保存1)模型训练2)模型保存3)映射保存 相关其它博客工程源代码下载其它资料下载…

让植被管理更精准:数据可视化的新利器

【小编整理了300可视化大屏源文件,需要可后台私~!】 在当今时代,数据可视化技术已经成为了一个非常重要的技术。对于植被管理来说,数据可视化也有着非常重要的作用。通过将植被管理数据可视化,我们可以更加清晰地了解植…

Apache Flink(十一):Flink集群部署-Standalone集群部署

🏡 个人主页:IT贫道_大数据OLAP体系技术栈,Apache Doris,Clickhouse 技术-CSDN博客 🚩 私聊博主:加入大数据技术讨论群聊,获取更多大数据资料。 🔔 博主个人B栈地址:豹哥教你大数据的个人空间-豹哥教你大数据个人主页-哔哩哔哩视频 目录 1. 节点划分

SpringCloud-高级篇(七)

前面在微服务里整合了Seata,下面利用Seata去解决分布式事务的问题,回去学习Seata中的四种解决方案 :首先学习XA模式 (1)XA模式 RM在前面讲的是资源管理器,在XA标准中RM都是由数据库来实现的,数…

数据挖掘目标(Kaggle Titanic 生存测试)

import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns1.数据导入 In [2]: train_data pd.read_csv(r../老师文件/train.csv) test_data pd.read_csv(r../老师文件/test.csv) labels pd.read_csv(r../老师文件/label.csv)[Su…

oracle详细安装教程(附带百度网盘资源)

一,下载安装包途径 1.官网 Unauthorized Request 2.百度网盘分析 https://pan.baidu.com/s/1n221gdTK0Fcho839oRab9g 提取码1q2w 二,安装教程 1.下载完安装包后点击 setup.exe 如果出现一下的问题,使用windows10等系统安装oracle 11g等版本的数据库…

二叉树的最大深度

问题描述: 给定一个二叉树 root ,返回其最大深度。 二叉树的 最大深度 是指从根节点到最远叶子节点的最长路径上的节点数。 示例 1: 输入:root [3,9,20,null,null,15,7] 输出:3示例 2: 输入&#xff1…

ue4 解决角度万向锁的问题 蓝图节点

问题:当角度值从359-1变化的时候,数值会经历358、357… 解决方法:勾上Shortest Path,角度值的会从359-1

Ajax原理以及优缺点

Ajax原理 1.Ajax的原理简单来说是在用户和服务器之间加了—个中间层(AJAX引擎),通过XmlHttpRequest对象来向服务器发异步请求, 2.从服务器获得数据,然后用javascript来操作DOM而更新页面。使用户操作与服务器响应异步化。 3.这其中最关键的一…

「Verilog学习笔记」简易秒表

专栏前言 本专栏的内容主要是记录本人学习Verilog过程中的一些知识点,刷题网站用的是牛客网 timescale 1ns/1nsmodule count_module(input clk,input rst_n,output reg [5:0]second,output reg [5:0]minute);always (posedge clk or negedge rst_n) begin if (~rst…

Axure电商产品移动端交互原型,移动端高保真Axure原型图(RP源文件手机app界面UI设计模板)

本作品是一套 Axure8 高保真移动端电商APP产品原型模板,包含了用户中心、会员成长、优惠券、积分、互动社区、运营推广、内容推荐、商品展示、订单流程、订单管理、售后及服务等完整的电商体系功能架构和业务流程。 本模板由一百三十多个界面上千个交互元件及事件组…

各地加速“双碳”落地,数字能源供应商怎么选?

作者 | 曾响铃 文 | 响铃说 随着我国力争2030年前实现“碳达峰”、2060年前实现“碳中和”的“双碳”目标提出,为各地区、各行业的低碳转型和绿色可持续发展制定“倒计时”时间表,一场围绕“数字能源”、“智慧能源”、“新能源”等关键词的创新探索进…

二百一十六、Flume——Flume拓扑结构之负载均衡和故障转移的开发案例(亲测,附截图)

一、目的 对于Flume的负载均衡和故障转移拓扑结构,进行一个开发测试 二、负载均衡和故障转移 (一)结构含义 Flume支持使用将多个sink逻辑上分到一个sink组 (二)结构特征 sink组配合不同的SinkProcessor可以实现负…

《地理信息系统原理》笔记/期末复习资料(10. 空间数据挖掘与空间决策支持系统)

目录 10. 空间数据挖掘与空间决策支持系统 10.1. 空间数据挖掘 10.1.1. 空间数据挖掘的概念 10.1.2. 空间数据挖掘的方法与过程 10.1.3. 空间数据挖掘的应用 10.2. 空间决策支持系统 10.2.1. 空间决策支持系统的概念 10.2.2. 空间决策支持系统的结构 10.2.3. 空间决策…