【C语言】结构体实现位段

引言

对位段进行介绍,什么是位段,位段如何节省空间,位段的内存分布,位段存在的跨平台问题,及位段的应用。

  158c3f50b199454985017a51dbef9841.png               ✨ 猪巴戒:个人主页✨

               所属专栏:《C语言进阶》

        🎈跟着猪巴戒,一起学习C语言🎈

目录

引言

什么是位段?

位段的作用

位段是如何节省空间?位段的内存分配

位段的内存分配

位段的跨平台问题

        

位段的应用


什么是位段?

位段的声明和结构是类似的,有两个不同:

  1. 位段的成员必须是整形家族的类型
  2. 位段的成员名后面有一个冒号和一个数字。

冒号后面的数字表示的是这个变量将使用多大的内存(单位是比特位)。

int _n : 2 表示的是_n这个整形变量本来是4个字节(也就是32个比特位) ,但是现在要将它的内存缩减到2个比特位。

struct A
{
	int _n : 2;
	int _b : 5;
	int _c : 10;
	int _d : 30;
};

整形家族的介绍: 

整形类型不仅包括基本整形,还有短整形,长整形,双长整形,字符型和布尔型。

b4fd4b3056ff4971a99486c14624d9ff.png

类型字节数取值范围
int(整形)4

-2147483648~2147483647

short(短整型)2-32768~32767
long(长整型)4/8-2^31~(2^31-1)
long long(双长型)8-2^63~(2^63-1)
char1-2^7~(2^7-1)
bool11,0

         

位段的作用

位段的作用就是节省空间。当我们有一些成员的取值范围有限的时候,所需要的内存空间也不需要太多的空间。

比如说布尔类型

只需要表示真或者假,1表示真,0表示假。实际上布尔类型的变量只占有1个比特位,(1个字节代表着8个比特位),如果使用位段就可以帮助我们节省大量的空间。 

由此,位段所执行的大小不能大于这个变量类型本身的大小,不然就会报错。

546b96377921447d8eb222b0eac7aac5.png

        

位段是如何节省空间?位段的内存分配

下面是刚才给大家做示范的例子,我们现在看这个位段所占用的空间:

#include <stdio.h>
struct A
{
	int _n : 2;
	int _b : 5;
	int _c : 10;
	int _d : 30;
};
int main()
{
	printf("%d\n", sizeof(struct A));
	return 0;
}

9a87e8673b874b9aa753c39567832273.png

 _n,_b,_c,_d这四个变量的大小加在一起,一共是47个比特位,那就是需要6个字节的大小。

但是,我们发现struct A的大小不仅仅是6个字节,而是8个字节

这就说明位段中内存分布不仅仅是简单组合,顺序地一个紧挨着一个地存放。

        

位段的内存分配

  1. 位段的成员可以是整形家族的类型
  2. 位段的空间上是按照需要以4个字节(int)或者1个字节(char)的方式来开辟的
  3. 位段涉及很多不确定因素,位段是不跨平台的,注意可移植的程序应该避免使用位段

2.位段的空间上是按照需要以4个字节(int)或者1个字节(char)的方式来开辟的 

1.例子

下面位段的大小是8个字节

struct A
{
	int _n : 2;
	int _b : 5;
	int _c : 10;
	int _d : 30;
};

解析struct A的内存分布: 

还是拿这个例子给大家举例:

因为是位段都是int类型,所以这里位段的空间按照4个字节的方式开辟。

首先开辟4个字节来存放内存。

_n是2个比特位,_b是5个比特位,_c是10个比特位,一共是17个比特位

放在4个字节(32个比特位/一个整形大小)当中,剩下15个比特位。

是不足够放下_d(30个比特位),所以另外开辟一个整型大小(4个字节/32个比特位),将_d放进去。

_n,_b,_c放在前面的一个整形,_d放在后面的一个整形。

一共是两个整形,就是8个字节。

db256b441ab74c01b349aa96bcb98916.png

         

  2.例子

下面位段的大小是3个字节

#include <stdio.h>
struct S
{
	char a : 3;
	char b : 4;
	char c : 5;
	char d : 4;
};
int main()
{
	printf("%d\n", sizeof(struct S));
	struct S s = { 0 };
	s.a = 10;
	s.b = 12;
	s.c = 3;
	s.d = 4;
	return 0;
}

9160dc1ccd474560bbfe0423b787846a.png

         

 解析struct S位段的内存分布:

这个位段都是char 类型,所以这里位段的空间按照1个字节的方式开辟。

1.首先开辟1个字节(8个比特位),来存放数据

a是3个比特位,b是4个比特位,那么开辟的第一个字节就剩下1个比特位,是不足够存放5个比特位的c变量。

2.开辟下一个字节(8个比特位)存放数据

c是5个比特位,这个字节还剩下3个比特位,不足够存放4个比特位的d变量。

3.开辟下一个空间(8个比特位)存放数据

d是4个比特位,将d存放第三个字节中。

6b12e045b18f47c7bbf0c9e0e04dd112.png

         

 解析struct S的数据在内存中的具体分布:

//在位段中的成员被赋值后,观察内存分布	
struct S s = { 0 };
s.a = 10;
s.b = 12;
s.c = 3;
s.d = 4;

struct S在内存中的分布其实是有所差异的,当位段中的成员被赋值后,我们就可以看到位段中的成员是如何分布的。

首先开辟一个字节后,

a=10的二进制数字是01010,位段:3个比特位,所以a的值放入内存中会被裁断,变成010.

b的值是12,位段:4个比特位,所以b存到内存中的值是1100.(数据是以二进制的形式存到内存)

a,b的存放方式如下图:a和b在第一个字节中的排列方式是从右到左的,也就是从高地址向低地址,在一个字节中优先排放高地址。

第二个字节开辟

c=3的二进制数字是11,位段:5个字节,不足5个字节用0来补充高位,也就是00011.

c的存放方式也是在这个字节中优先排放高地址处。

第三个字节开辟

d的值是4,二进制数字是100,位段:4个字节,高位用o来补充,也就是0100

d的存放方式也是在这个字节中优先排放高地址处。

ffe2ba31e0174983abe6ba386abfbb7c.png

所以位段struct S在内存中存放的数据是01100010 00000011 00000100

换算成十六进制数字就是 62 03 04

验证:

通过内存调试,观察内存窗口就可以看到

6ba1d2d19f724c15be105669fe1a14f7.png

         

位段的跨平台问题

  1. int 位段被当成有符号数还是⽆符号数是不确定的。
  2. 位段中最⼤位的数⽬不能确定。(16位机器最⼤16,32位机器最⼤32,写成27,在16位机器会出问题。
  3. 位段中的成员在内存中从左向右分配,还是从右向左分配标准尚未定义。
  4. 当⼀个结构包含两个位段,第⼆个位段成员⽐较⼤,⽆法容纳于第⼀个位段剩余的位时,是舍弃剩余的位还是利⽤,这是不确定的。

总结: 

跟结构相⽐,位段可以达到同样的效果,并且可以很好的节省空间,但是有跨平台的问题存在。

        

位段的应用

下图是⽹络协议中,IP数据包的格式,我们可以看到其中很多的属性只需要⼏个bit位就能描述,这⾥使⽤位段,能够实现想要的效果,也节省了空间,这样⽹络传输的数据报⼤⼩也会较⼩⼀些,对⽹络的畅通是有帮助的。
大量的数组经过位段的处理,可以将数据的内存缩小,是数据包的大小变小,数据包变小,网络的传输就会变得快速。
cbbe0daa46a44f1cb28b43085d50b671.png

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/239478.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

鸿蒙系统扫盲(五):再谈鸿蒙开发用什么语言?

前段时间&#xff0c;发表了鸿蒙系统扫盲&#xff08;三&#xff09;&#xff1a;鸿蒙开发用什么语言&#xff1f;这篇文章&#xff0c;收到一些网友的提问&#xff0c;一一解答了&#xff0c;还有网友对我进行了严厉的批评和尖锐的指责&#xff0c;说我有点颠倒是非&#xff0…

集成开发之如何用好明道云

内容来自演讲&#xff1a;张嵩 | 苏州睿能科技有限公司 | 公司负责人 摘要 这篇文章介绍了作者所在公司如何利用明道云进行集成开发&#xff0c;并分享了四个实际案例。在第一个数字化实验室项目中&#xff0c;该公司使用明道云取代现有的STARLIMS商业软件&#xff0c;并实现…

sleep和wait区别,并且查看线程运行状态

一、sleep和wait区别 区别一&#xff1a;语法使用不同 wait 方法必须配合 synchronized 一起使用&#xff0c;不然在运行时就会抛出 IllegalMonitorStateException 的异常 而 sleep 可以单独使用&#xff0c;无需配合 synchronized 一起使用。 区别二&#xff1a;所属类不同…

【Spring教程26】Spring框架实战:从零开始学习SpringMVC 之 bean加载控制

目录 1 问题分析2 思路分析3 环境准备4 设置bean加载控制5 知识点1&#xff1a;ComponentScan 欢迎大家回到《Java教程之Spring30天快速入门》&#xff0c;本教程所有示例均基于Maven实现&#xff0c;如果您对Maven还很陌生&#xff0c;请移步本人的博文《如何在windows11下安装…

大数据技术6:大数据技术栈

前言&#xff1a;大数据相关的技术名词特别多&#xff0c;这些技术栈之间的关系是什么&#xff0c;对初学者来说很难找到抓手。我一开始从后端转大数据的时候有点懵逼&#xff0c;整体接触了一遍之后才把大数据技术栈给弄明白了。 一、大数据技术栈 做大数据开发&#xff0c;无…

YOLOv8改进 | 2023主干篇 | 利用RT-DETR特征提取网络PPHGNetV2改进YOLOv8(超级轻量化精度更高)

一、本文介绍 本文给大家带来利用RT-DETR模型主干HGNet去替换YOLOv8的主干&#xff0c;RT-DETR是今年由百度推出的第一款实时的ViT模型&#xff0c;其在实时检测的领域上号称是打败了YOLO系列&#xff0c;其利用两个主干一个是HGNet一个是ResNet&#xff0c;其中HGNet就是我们…

Logstash输入Kafka输出Es配置

Logstash介绍 Logstash是一个开源的数据收集引擎&#xff0c;具有实时管道功能。它可以从各种数据源中动态地统一和标准化数据&#xff0c;并将其发送到你选择的目的地。Logstash的早期目标主要是用于收集日志&#xff0c;但现在的功能已经远远超出这个范围。任何事件类型都可…

记录汇川:MODBUS-梯形图

H5U的MODBUS通信不需要编写程序&#xff0c;通过组态MODBUS通信配置表&#xff0c;实现数据通信。 相对自由口走报文的形式&#xff0c;这个更加的方便。配置结束&#xff0c;就可以监控数据或写入。

Linux - 进程间通信(中)- 管道的应用场景

前言 在上篇博客当中&#xff0c;对Linux 当中的进程通信&#xff0c;做了详细阐述&#xff0c;主要是针对父子进程的通信来阐述的同时&#xff0c;也进行了模拟实现。 对于管道也有了初步了解&#xff0c;但是这仅仅是 进程间通信的一部分&#xff0c;Linux 当中关于进程间通…

Unity光照模型实践

光照作为3D渲染中最重要的部分之一&#xff0c;如何去模拟真实环境的光照是重要的研究内容&#xff0c;但是现实环境光照过于复杂&#xff0c;有很多经典好用的光照模型去近似真实光照。 根据基础的Phong模型 最终某个点的结果为 环境光Ambient 漫反射光Diffuse 高光Specula…

安卓MediaRecorder(2)录制源码分析

文章目录 前言JAVA new MediaRecorder() 源码分析android_media_MediaRecorder.cpp native_init()MediaRecorder.java postEventFromNativeandroid_media_MediaRecorder.cpp native_setup() MediaRecorder 参数设置MediaRecorder.prepare 分析MediaRecorder.start 分析MediaRec…

Navicat 技术指引 | 适用于 GaussDB 分布式的服务器对象的创建/设计

Navicat Premium&#xff08;16.3.3 Windows版或以上&#xff09;正式支持 GaussDB 分布式数据库。GaussDB分布式模式更适合对系统可用性和数据处理能力要求较高的场景。Navicat 工具不仅提供可视化数据查看和编辑功能&#xff0c;还提供强大的高阶功能&#xff08;如模型、结构…

JavaSE知识点回顾,附学习思维导图

第一阶段 day01 java 发展&#xff0c;java 环境( path, java_home, class_path)&#xff0c;java 原理&#xff0c; java 执行 &#xff0c; jvm , jre , jdk day02 变量 标识符命名规则 数据类型 数据类型的转换 运算符 day03 选择结构 if , switch day04 循环结构 for , whi…

java--Collection的遍历方式

1.迭代器概述 迭代器是用来遍历集合的专用方式(数组没有迭代器)&#xff0c;在java中迭代器是Iterator。 2.Collection集合获取迭代器的方法 3.Iterator迭代器中的常用方法 4.增强for循环 ①增强for可以用来遍历集合或数组。 ②增强for遍历集合&#xff0c;本质就是迭代器遍…

005、Softmax损失

之——softmax与交叉熵 杂谈 我们常用到softmax函数与交叉熵的结合作为损失函数以监督学习&#xff0c;这里做一个小小的总结。 正文 1.softmax的基本改进 所谓softmax就是在对接全连接层输出时候把输出概率归一化&#xff0c;最基础的就是这样&#xff1a; 效果就是这样&…

(第65天)PDB 快照

介绍 PDB 快照是一个 PDB 指定时间点的副本。在创建快照时,源 PDB 可以是只读或者读写模式。 PDB 快照可以用于快速创建 PDB。 PDB 快照可以分为手动和自动两种创建方式(create pluggable database|alter pluggable database): 手动快照使用 SNAPSHOT 子句的方式来创建自动…

Jmeter beanshell编程实例

1、引言 BeanShell是一种小型的&#xff0c;免费的&#xff0c;可嵌入的符合Java语法规范的源代码解释器&#xff0c;具有对象脚本语言特性。 在Jmeter实践中&#xff0c;由于BeanShell组件较高的自由度&#xff0c;通常被用来处理较为复杂&#xff0c;其它组件难以处理的问题…

jmeter接口测试之登录测试

注册登录_登陆接口文档 1.登录 请求地址&#xff1a; POST xxxxxx/Home/Login 请求参数&#xff1a; args{LoginName:"mtest", // 登录名&#xff0c;可以为用户名或邮箱Password:"123456" // 密码" }响应数据&#xff1a; 成功 {"S…

微表情检测(四)----SL-Swin

SL-Swin: A Transformer-Based Deep Learning Approach for Macro- and Micro-Expression Spotting on Small-Size Expression Datasets 在本文中&#xff0c;我们致力于解决从视频中检测面部宏观和微观表情的问题&#xff0c;并通过使用深度学习方法分析光流特征提出了引人注…

[GFCTF 2021]文件查看器

文章目录 前置知识可调用对象数组对方法的调用GC回收机制phar修改签名 解题步骤 前置知识 可调用对象数组对方法的调用 我们先来看下面源码 <?phperror_reporting(0);class User{public $username;public $password;public function check(){if($this->username"…