助力工业生产质检,基于轻量级yolov5-seg开发构建工业场景下滚珠丝杠传动表面缺陷分割检测系统

AI赋能工业生产是一个强有力的方式,在我们之前的系列博文中也有很多相应的开发实践,感兴趣的胡都可以自行移步阅读,本文的核心思想就是想要基于轻量级的实例分割模型来开发构建工业场景下的滚珠丝杠传动表面缺陷分割检测系统,首先看下实例效果:

简单看下数据集:

这里我直接使用的是官方v7.0分支的代码,项目地址在这里,如下所示:

如果不会使用可以参考我的教程:

《基于yolov5-v7.0开发实践实例分割模型超详细教程》

非常详细的操作实践教程,这里就不再赘述了。

训练数据配置文件如下所示:

#Dataset
path: ./dataset
train: images/train 
val: images/train  
test:  images/train 



# Classes
names:
  0: Pitting

本文使用的是轻量级的n系列的分割模型,如下:

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license

# Parameters
nc: 1  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.25  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]

# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)

   [[17, 20, 23], 1, Segment, [nc, anchors, 32, 256]],  # Detect(P3, P4, P5)
  ]

这里我们是直接基于CPU来进行训练的,如下所示:

接下来看下结果详情:
【Precision曲线】
精确率曲线(Precision-Recall Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
绘制精确率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率和召回率。
将每个阈值下的精确率和召回率绘制在同一个图表上,形成精确率曲线。
根据精确率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察精确率曲线,我们可以根据需求确定最佳的阈值,以平衡精确率和召回率。较高的精确率意味着较少的误报,而较高的召回率则表示较少的漏报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
精确率曲线通常与召回率曲线(Recall Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。
召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。
绘制召回率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的召回率和对应的精确率。
将每个阈值下的召回率和精确率绘制在同一个图表上,形成召回率曲线。
根据召回率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察召回率曲线,我们可以根据需求确定最佳的阈值,以平衡召回率和精确率。较高的召回率表示较少的漏报,而较高的精确率意味着较少的误报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
召回率曲线通常与精确率曲线(Precision Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能。
F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。
绘制F1值曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率、召回率和F1分数。
将每个阈值下的精确率、召回率和F1分数绘制在同一个图表上,形成F1值曲线。
根据F1值曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
F1值曲线通常与接收者操作特征曲线(ROC曲线)一起使用,以帮助评估和比较不同模型的性能。它们提供了更全面的分类器性能分析,可以根据具体应用场景来选择合适的模型和阈值设置。

模型训练可视化如下所示:

Batch计算实例如下所示:

推理实例如下所示:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/237542.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Openwrt源码下载出现“The remote end hung up unexpected”

最近项目原因需要下载openwrt21.02版本源码,花费了很多时间,找到正确方法后,发现可以节省很多时间,记录下过程,方便自己,可能方便他人。 一.问题阐述 openwrt21.02下载链接如下: git clone -…

Springboot入门篇

一、概述 Spring是一个开源框架,2003 年兴起的一个轻量级的Java 开发框架,作者Rod Johnson 。Spring是为了解决企业级应用开发的复杂性而创建的,简化开发。 1.1对比 对比一下 Spring 程序和 SpringBoot 程序。如下图 坐标 Spring 程序中的…

【华为数据之道学习笔记】3-11元数据管理

1. 产生元数据 (1)明确业务元数据、技术元数据和操作元数据之间的关系,定义华为公司元数据模型。 (2)针对找数据及获取数据难的痛点,明确业务元数据、技术元数据、操作元数据的设计原则。 1)业务…

Pytorch-LSTM轴承故障一维信号分类(一)

目录 前言 1 数据集制作与加载 1.1 导入数据 第一步,导入十分类数据 第二步,读取MAT文件驱动端数据 第三步,制作数据集 第四步,制作训练集和标签 1.2 数据加载,训练数据、测试数据分组,数据分batch…

C++之STL算法(1)

STL容器算法主要由、、组成;   algorithm主要有遍历、比较、交换、查找、拷贝、修改等; 1.遍历容器for_each for_each()函数用于完成容器遍历,函数参数如下: for_each(_InIt _First, _InIt _Last, _Fn _Func) 形参&#xff1a…

mybatis多表映射-延迟加载,延迟加载的前提条件是:分步查询

1、建库建表 create database mybatis-example; use mybatis-example; create table t_book (bid varchar(20) primary key,bname varchar(20),stuid varchar(20) ); insert into t_book values(b001,Java,s001); insert into t_book values(b002,Python,s002); insert into …

基于 librosa和soundfile对音频进行重采样 (VITS 必备)

基于 librosa和soundfile对音频进行重采样 一、前言 在玩bert-vits2的时候有对音频进行重采样的需求,故写了一下批量对音频进行重采样的脚本。 优化点: 根据机器自适应线程数为最多,保证充分利用机器资源,提高速度>30%。支持…

UE引擎 LandscapeGrass 实现机制分析(UE5.2)

前言 随着电脑和手机硬件性能越来越高,游戏越来越追求大世界,而大世界非常核心的一环是植被,目前UE5引擎提供给植被生成的主流两种方式为 手刷植被和LandscapeGrass(WeightMap程序化植被)。当然UE5.3推出新一代PCGFramework 节点程序化生成框…

Android 顶部对齐宽度撑满高度等比例缩放及限制最大最小高度

一 示例 二 代码 <?xml version"1.0" encoding"utf-8"?> <FrameLayout xmlns:android"http://schemas.android.com/apk/res/android"android:layout_width"match_parent"android:layout_height"match_parent&qu…

点评项目——秒杀优化

2023.12.11 上一张的秒杀券下单还可以进行优化&#xff0c;先来回顾一下下单流程&#xff1a; 可以看出流程设计多次查询和操作数据库的操作&#xff0c;并且执行顺序是一个线程串行执行&#xff0c;执行性能是比较低的。 优化方案&#xff1a;我们将判断秒杀库存和校验一人一单…

蓝桥杯周赛 第 1 场 强者挑战赛 6. 小球碰撞【算法赛】(思维题/最长上升子序列LIS)

题目 https://www.lanqiao.cn/problems/9494/learning/?contest_id153 思路来源 Aging代码 题解 二分时间t&#xff0c;第i个小球对应一个起点pi、终点pit*vi的区间&#xff0c;问题转化为&#xff0c; 选最多的区间&#xff0c;使得不存在区间包含&#xff08;即li<l…

第二百零一回 介绍一个三方包open_settings

文章目录 1. 概念介绍2 使用方法3 代码与效果3.1 示例代码3.2 运行效果 4. 经验分享 我们在上一章回中介绍了Form Widget相关的内容&#xff0c;本章回中将介绍Form系列组件的验证与提交功能.闲话休提&#xff0c;让我们一起Talk Flutter吧。 1. 概念介绍 我们在这里说的的验…

【电路笔记】-电位器

电位器 文章目录 电位器1、概述2、电位器类型2.1 旋转电位器2.2 滑块电位器2.3 预设和微调电位器2.4 变阻器 3、电位器示例14、电位器作为分压器5、电位器示例26、变阻器6、滑块变阻器7、线性或对数电位器8、总结 当连接的轴物理旋转时&#xff0c;电位计和变阻器的电阻值会发生…

23种设计模式之装饰者模式(被装饰者,接口层,装饰抽象层,具体装饰者)

23种设计模式之装饰者模式 文章目录 23种设计模式之装饰者模式设计思想装饰者模式的优点装饰者模式的缺点装饰者模式的优化方法UML 解析预设场景 代码释义总结 设计思想 原文:装饰器模式&#xff08;Decorator Pattern&#xff09;允许向一个现有的对象添加新的功能&#xff0…

【EMNLP 2023】面向垂直领域的知识预训练语言模型

近日&#xff0c;阿里云人工智能平台PAI与华东师范大学数据科学与工程学院合作在自然语言处理顶级会议EMNLP2023上发表基于双曲空间和对比学习的垂直领域预训练语言模型。通过比较垂直领域和开放领域知识图谱数据结构的不同特性&#xff0c;发现在垂直领域的图谱结构具有全局稀…

做数据分析为何要学统计学(3)——何为置信区间?它有什么作用?

置信区间是统计学中的一个重要工具&#xff0c;用以使用样本参数()来估计总体均值在某置信水平下的范围。通俗一点讲&#xff0c;如果置信度为95%&#xff08;等价于显著水平a0.05&#xff09;&#xff0c;置信区间为[a,b]&#xff0c;这就意味着总体均值落入该区间的概率为95%…

虹科Pico汽车示波器 | 汽车免拆检修 | 2019款别克GL8豪华商务车前照灯水平调节故障

一、故障现象 一辆2019款别克GL8豪华商务车&#xff0c;搭载LTG发动机&#xff0c;累计行驶里程约为10.7万km。车主反映&#xff0c;车辆行驶过程中组合仪表提示前照灯水平调节故障。 二、故障诊断 接车后试车&#xff0c;起动发动机&#xff0c;组合仪表上提示“前照灯水平调节…

Spring Boot监听redis过期的key

Redis支持过期监听&#xff0c;可以实现监听过期数据&#xff0c;实现过程如下 1、pom依赖 <!-- Redis--><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-redis</artifactId></depend…

ChatGPT/GPT4应用:文本、论文、编程、绘图等,提高工作效率及科研项目开发能力

2023年随着OpenAI开发者大会的召开&#xff0c;最重磅更新当属GPTs&#xff0c;多模态API&#xff0c;未来自定义专属的GPT。微软创始人比尔盖茨称ChatGPT的出现有着重大历史意义&#xff0c;不亚于互联网和个人电脑的问世。360创始人周鸿祎认为未来各行各业如果不能搭上这班车…

深入理解模板引擎:解锁 Web 开发的新境界(下)

&#x1f90d; 前端开发工程师&#xff08;主业&#xff09;、技术博主&#xff08;副业&#xff09;、已过CET6 &#x1f368; 阿珊和她的猫_CSDN个人主页 &#x1f560; 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 &#x1f35a; 蓝桥云课签约作者、已在蓝桥云…