【大数据】Hudi 核心知识点详解(一)

😊 如果您觉得这篇文章有用 ✔️ 的话,请给博主一个一键三连 🚀🚀🚀 吧 (点赞 🧡、关注 💛、收藏 💚)!!!您的支持 💖💖💖 将激励 🔥 博主输出更多优质内容!!!

  • Hudi 核心知识点详解(一)
  • Hudi 核心知识点详解(二)

Hudi 核心知识点详解(一)

  • 1.数据湖与数据仓库的区别 ?
    • 1.1 数据仓库
    • 1.2 数据湖
    • 1.3 两者的区别
  • 2.Hudi 基础功能
    • 2.1 Hudi 简介
    • 2.2 Hudi 功能
    • 2.3 Hudi 的特性
    • 2.4 Hudi 的架构
    • 2.5 湖仓一体架构
  • 3.Hudi 数据管理
    • 3.1 Hudi 表数据结构
      • 3.1.1 .hoodie 文件
      • 3.1.2 数据文件
    • 3.2 数据存储概述
    • 3.3 Metadata 元数据
    • 3.4 Index 索引
      • 索引策略
        • 工作负载 1:对事实表
        • 工作负载 2:对事件表
        • 工作负载 3:随机更新 / 删除维度表
    • 3.5 Data 数据

在 Flink 实时流中,经常会通过 Flink CDC 插件读取 Mysql 数据,然后写入 Hudi 中。所以在执行上述操作时,需要了解 Hudi 的基本概念以及操作原理,这样在近实时往 Hudi 中写数据时,遇到报错问题,才能及时处理。

接下来将从以下几方面全面阐述 Hudi 组件核心知识点。

  • 数据湖与数据仓库的区别 ?
  • Hudi 基础功能
  • Hudi 数据管理
  • Hudi 核心点解析

1.数据湖与数据仓库的区别 ?

1.1 数据仓库

  • 数据仓库(英语:Data Warehouse,简称:数仓、DW),是一个用于 存储分析报告 的数据系统。

  • 数据仓库的目的是构建面向分析的集成化数据环境,分析结果为企业提供 决策支持Decision Support)。

在这里插入图片描述

1.2 数据湖

  • 数据湖Data Lake)和数据库、数据仓库一样,都是数据存储的设计模式,现在企业的数据仓库都会通过分层的方式将数据存储在文件夹、文件中。

  • 数据湖是一个集中式数据存储库,用来存储大量的原始数据,使用平面架构来存储数据。

  • 定义:一个以原始格式(通常是对象块或文件)存储数据的系统或存储库,通常是所有企业数据的单一存储。

  • 数据湖可以包括来自关系数据库的结构化数据(行和列)、半结构化数据(CSV、日志、XML、JSON)、非结构化数据(电子邮件、文档、PDF)和二进制数据(图像、音频、视频)。

  • 数据湖中数据,用于报告、可视化、高级分析和机器学习等任务。

在这里插入图片描述

1.3 两者的区别

  • 数据仓库是一个优化的数据库,用于分析来自事务系统和业务线应用程序的关系数据。

  • 数据湖存储来自业务线应用程序的关系数据,以及来自移动应用程序、IoT 设备和社交媒体的非关系数据。

特性
数据仓库
数据湖
数据来自事务系统、运营数据库和业务线应用程序的关系数据来自 IoT 设备、网站、移动应用程序、社交媒体和企业应用程序的非关系和关系数据
Schema设计在数据仓库实施之前(写入型 Schema)写入在分析时(读取型 Schema)
性价比更快查询结果会带来较高存储成本更快查询结果只需较低存储成本
数据质量可作为重要事实依据的高度监管数据任何可以或无法进行监管的数据(例如原始数据)
用户业务分析师数据科学家、数据开发人员和业务分析师(使用监管数据)
分析批处理报告、BI和可视化机器学习、预测分析、数据发现和分析

数据湖并不能替代数据仓库,数据仓库在高效的报表和可视化分析中仍有优势。

2.Hudi 基础功能

2.1 Hudi 简介

Apache Hudi 由 Uber 开发并开源,该项目在 2016 年开始开发,并于 2017 年开源,2019 年 1 月进入 Apache 孵化器,且 2020 年 6 月称为 Apache 顶级项目,目前最新版本:0.10.1 版本。

Hudi 一开始支持 Spark 进行数据摄入(批量 Batch 和流式 Streaming),从 0.7.0 版本开始,逐渐与 Flink 整合,主要在于 Flink SQL 整合,还支持 Flink SQL CDC。

在这里插入图片描述

HudiHadoop Upserts anD Incrementals 的缩写),是目前市面上流行的三大开源数据湖方案之一。

用于管理分布式文件系统 DFS 上大型分析数据集存储。

简单来说,Hudi 是一种针对分析型业务的、扫描优化的数据存储抽象,它能够使 DFS 数据集在分钟级的时延内支持变更,也支持下游系统对这个数据集的增量处理。

2.2 Hudi 功能

  • ✅ Hudi 是在大数据存储上的一个数据集,可以将 Change Logs 通过 upsert 的方式合并进 Hudi。
  • ✅ Hudi 对上可以暴露成一个普通 Hive 或 Spark 表,通过 API 或命令行可以获取到增量修改的信息,继续供下游消费。
  • ✅ Hudi 保管修改历史,可以做时间旅行或回退。
  • ✅ Hudi 内部有主键到文件级的索引,默认是记录到文件的布隆过滤器。

在这里插入图片描述

2.3 Hudi 的特性

Apache Hudi 使得用户能在 Hadoop 兼容的存储之上存储大量数据,同时它还提供两种原语,不仅可以 批处理,还可以在数据湖上进行 流处理

1️⃣ Update / Delete 记录:Hudi 使用细粒度的文件 / 记录级别索引来支持 Update / Delete 记录,同时还提供写操作的事务保证。查询会处理最后一个提交的快照,并基于此输出结果。

2️⃣ 变更流:Hudi 对获取数据变更提供了一流的支持:可以从给定的 时间点 获取给定表中已 updated / inserted / deleted 的所有记录的增量流,并解锁新的查询姿势(类别)。

  • ✅ Apache Hudi 本身不存储数据,仅仅管理数据。
  • ✅ Apache Hudi 也不分析数据,需要使用计算分析引擎,查询和保存数据,比如 Spark 或 Flink。
  • ✅ 使用 Hudi 时,加载 jar 包,底层调用 API,所以需要依据使用大数据框架版本,编译 Hudi 源码,获取对应依赖 jar 包。

在这里插入图片描述

2.4 Hudi 的架构

在这里插入图片描述

  • ✅ 通过 DeltaStreammer、Flink、Spark 等工具,将数据摄取到数据湖存储,可使用 HDFS 作为数据湖的数据存储。
  • ✅ 基于 HDFS 可以构建 Hudi 的数据湖。
  • ✅ Hudi 提供统一的访问 Spark 数据源和 Flink 数据源。
  • ✅ 外部通过不同引擎,如:Spark、Flink、Presto、Hive、Impala、Aliyun DLA、AWS Redshit 访问接口。

图片

2.5 湖仓一体架构

Hudi 对于 Flink 友好支持以后,可以使用 Flink + Hudi 构建实时湖仓一体架构,数据的时效性可以到分钟级,能很好的满足业务准实时数仓的需求。

通过湖仓一体、流批一体,准实时场景下做到了:数据同源、同计算引擎、同存储、同计算口径。

在这里插入图片描述

3.Hudi 数据管理

3.1 Hudi 表数据结构

Hudi 表的数据文件,可以使用操作系统的文件系统存储,也可以使用 HDFS 这种分布式的文件系统存储。为了后续分析性能和数据的可靠性,一般使用 HDFS 进行存储。以 HDFS 存储来看,一个 Hudi 表的存储文件分为两类。

在这里插入图片描述

  • .hoodie 文件:由于 CRUD 的零散性,每一次的操作都会生成一个文件,这些小文件越来越多后,会严重影响 HDFS 的性能,Hudi 设计了一套文件合并机制。.hoodie 文件夹中存放了对应的 文件合并操作 相关的日志文件。
  • amricasasia 相关的路径是 实际的数据文件,按分区存储,分区的路径 key 是可以指定的。

3.1.1 .hoodie 文件

Hudi 把随着时间流逝,对表的一系列 CRUD 操作叫做 Timeline,Timeline 中某一次的操作,叫做 Instant

Hudi 的核心是维护 Timeline 在不同时间对表执行的所有操作,Instant 这有助于提供表的即时视图,同时还有效地支持按到达顺序检索数据。Hudi Instant 由以下组件组成:

  • Instant Action:记录本次操作是一次操作类型,数据提交COMMITS),还是 文件合并COMPACTION),或者是 文件清理CLEANS)。
  • Instant Time:本次操作发生的时间,通常是时间戳(例如:20190117010349),它按照动作开始时间的顺序单调递增。
  • State:操作的状态,发起REQUESTED),进行中INFLIGHT),还是 已完成COMPLETED)。

.hoodie 文件夹中存放对应操作的状态记录:

在这里插入图片描述

3.1.2 数据文件

Hudi 真实的数据文件使用 Parquet 文件格式存储。

在这里插入图片描述

其中包含一个 metadata 元数据文件和数据文件 parquet 列式存储。

Hudi 为了实现数据的 CRUD,需要能够唯一标识一条记录,Hudi 将把数据集中的 唯一字段record key)+ 数据所在分区partition Path)联合起来当做 数据的唯一键

3.2 数据存储概述

Hudi 数据集的 组织目录结构 与 Hive 表示非常相似,一份数据集对应这一个根目录。数据集被 打散为多个分区,分区字段以文件夹形式存在,该文件夹包含该分区的所有文件。

在这里插入图片描述

在根目录下,每个分区都有唯一的分区路径,每个分区数据存储在多个文件中。

每个文件都有唯一的 fileId 和生成文件的 commit 标识。如果发生更新操作时,多个文件共享相同的 fileId,但会有不同的 commit

3.3 Metadata 元数据

时间轴Timeline)的形式将数据集上的各项操作元数据维护起来,以支持数据集的瞬态视图,这部分元数据存储于根目录下的元数据目录。一共有三种类型的元数据:

  • Commits:一个单独的 commit 包含对数据集之上一批数据的一次原子写入操作的相关信息。我们用单调递增的时间戳来标识 commits,标定的是一次写入操作的开始。
  • Cleans:用于清除数据集中不再被查询所用到的旧版本文件的后台活动。
  • Compactions:用于协调 Hudi 内部的数据结构差异的后台活动。例如,将更新操作由基于行存的日志文件归集到列存数据上。

图片

3.4 Index 索引

Hudi 维护着一个索引,以支持在记录 key 存在情况下,将新记录的 key 快速映射到对应的 fileId

  • Bloom filter:存储于数据文件页脚。默认选项,不依赖外部系统实现。数据和索引始终保持一致。
  • Apache HBase:可高效查找一小批 key。在索引标记期间,此选项可能快几秒钟。

在这里插入图片描述

索引策略

工作负载 1:对事实表

许多公司将大量事务数据存储在 NoSQL 数据存储中。例如,拼车情况下的行程表、股票买卖、电子商务网站中的订单。这些表通常会随着对最新数据的随机更新而不断增长,而长尾更新会针对较旧的数据,这可能是由于交易在以后结算 / 数据更正所致。换句话说,大多数更新进入最新的分区,很少有更新进入较旧的分区。

在这里插入图片描述
对于这样的工作负载,BLOOM 索引表现良好,因为索引查找 将基于大小合适的布隆过滤器修剪大量数据文件。此外,如果可以构造键,以使它们具有一定的顺序,则要比较的文件数量会通过范围修剪进一步减少。

Hudi 使用所有文件键范围构建一个区间树,并有效地过滤掉更新 / 删除记录中与任何键范围不匹配的文件。

为了有效地将传入的记录键与布隆过滤器进行比较,即最小数量的布隆过滤器读取和跨执行程序的统一工作分配,Hudi 利用输入记录的缓存并采用可以使用统计信息消除数据偏差的自定义分区器。有时,如果布隆过滤器误报率很高,它可能会增加混洗的数据量以执行查找。

Hudi 支持动态布隆过滤器(使用启用 hoodie.bloom.index.filter.type=DYNAMIC_V0),它根据存储在给定文件中的记录数调整其大小,以提供配置的误报率。

工作负载 2:对事件表

事件流无处不在。来自 Apache Kafka 或类似消息总线的事件通常是事实表大小的 10 − 100 10-100 10100 倍,并且通常将 时间(事件的到达时间 / 处理时间)视为一等公民。

例如,物联网事件流、点击流数据、广告印象 等。插入和更新仅跨越最后几个分区,因为这些大多是仅附加数据。鉴于可以在端到端管道中的任何位置引入重复事件,因此在存储到数据湖之前进行重复数据删除是一项常见要求。

在这里插入图片描述
一般来说,这是一个非常具有挑战性的问题,需要以较低的成本解决。虽然,我们甚至可以使用键值存储来使用 HBASE 索引执行重复数据删除,但索引存储成本会随着事件的数量线性增长,因此可能会非常昂贵。

实际上,BLOOM 带有范围修剪的索引是这里的最佳解决方案。人们可以利用时间通常是一等公民这一事实并构造一个键,event_ts + event_id 例如插入的记录具有单调递增的键。即使在最新的表分区中,也可以通过修剪大量文件来产生巨大的回报。

工作负载 3:随机更新 / 删除维度表

这些类型的表格通常包含高维数据并保存参考数据,例如 用户资料商家信息。这些是高保真表,其中更新通常很小,但也分布在许多分区和数据文件中,数据集从旧到新。通常,这些表也是未分区的,因为也没有对这些表进行分区的好方法。

在这里插入图片描述
如前所述,BLOOM 如果无法通过比较范围 / 过滤器来删除大量文件,则索引可能不会产生好处。在这样的随机写入工作负载中,更新最终会触及表中的大多数文件,因此布隆过滤器通常会根据一些传入的更新指示所有文件的真阳性。因此,我们最终会比较范围 / 过滤器,只是为了最终检查所有文件的传入更新。

SIMPLE 索引将更适合,因为它不进行任何基于预先修剪的操作,而是直接与每个数据文件中感兴趣的字段连接 。HBASE 如果操作开销是可接受的,并且可以为这些表提供更好的查找时间,则可以使用索引。

在使用全局索引时,用户还应该考虑设置 hoodie.bloom.index.update.partition.path=truehoodie.simple.index.update.partition.path=true 处理分区路径值可能因更新而改变的情况,例如用户表按家乡分区;用户搬迁到不同的城市。这些表也是 Merge-On-Read 表类型的绝佳候选者。

3.5 Data 数据

Hudi 以两种不同的存储格式存储所有摄取的数据,用户可选择满足下列条件的任意数据格式:

  • 读优化的列存格式ROFormat):缺省值为 Apache Parquet
  • 写优化的行存格式WOFormat):缺省值为 Apache Avro

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/235231.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【操作宝典】VSCode解锁指南:释放潜能的详细教程!

目录 📖前言 🚀 1 配置node.js 🚀2. 使用脚本测试vue项目 🚀3. VSCode运行vue 🚀4. VSCode引入elementUI 🌟4.1 显示OPENSSL错误 📖前言 Visual Studio Code(简称VSCode&#x…

MySQL数据库,创建和管理表

创建数据库: 方式一:创建数据库 CREATE DATABASE 数据库名;(使用的是默认的字符集) 方式二:创建数据库并指定字符集 CREATE DATABASE 数据库名 CHARACTER SET 字符集; 方式三:判断数…

基于若依的ruoyi-nbcio的flowable流程管理系统增加服务任务和我的抄送功能

更多ruoyi-nbcio功能请看演示系统 gitee源代码地址 前后端代码: https://gitee.com/nbacheng/ruoyi-nbcio 演示地址:RuoYi-Nbcio后台管理系统 1、增加一个状态字段 wf_copy增加下面两个字段 就用未读已读来区分 2、前端 api接口增加如下&#xff…

城市基础设施智慧路灯改造的特点

智慧城市建设稳步有序推进。作为智慧城市的基础设施,智能照明是智慧城市的重要组成部分,而叁仟智慧路灯是智慧城市理念下的新产品。随着物联网和智能控制技术的飞速发展,路灯被赋予了新的任务和角色。除了使道路照明智能化和节能化外&#xf…

Oracle(2-12)User-Managed Complete Recovery

文章目录 一、基础知识1、Media Recovery 介质恢复2、Recovery Steps 恢复步骤3、恢复4、Recovery in ARCHIVELOG 在ARCHIVELOG中恢复5、Complete Recovery完全恢复6、CR in ARCHIVELOG Mode 归档日志模式下的完全恢复7、Determine Files Need Recovery确定需要恢复的文件8、Ab…

HTTP与HTTPS的区别:安全性、协议地址和默认端口等比较

目录 ​编辑 作者其他博客链接: 一、概述 二、HTTP与HTTPS的区别 安全性 协议地址 默认端口 性能影响 三、比较与评估 浏览器支持 部署和维护成本 隐私保护 四、最佳实践建议 作者其他博客链接: 深入理解HashMap:Java中的键值对…

侯捷C++ (二--STL标准库)2

适配器 adapter 也可以叫做改造器,改造已经存在的东西 有:仿函数适配器、迭代器适配器、容器适配器 实现适配,可以使用继承、复合的两种方式实现。 共性:STL使用复合来实现适配 容器适配器 包括stack、queue,内含一…

win11 powershell conda 激活环境后不显示环境名称

win11 powershell conda 激活环境后不显示环境名称 问题现象解决方法 问题现象 安装 Anaconda 后在 powershell 中激活环境后,命令行前面不显示环境名称 解决方法 在 powershell 中执行 conda init 重新打开 poweshell 出现以下问题,请参考 win11 p…

fl studio 21破解版注册机下载 水果音乐编曲软件 FL Studio v21.

FL studio21中文别名水果编曲软件,是一款全能的音乐制作软件,包括编曲、录音、剪辑和混音等诸多功能,让你的电脑编程一个全能的录音室,它为您提供了一个集成的开发环境,使用起来非常简单有效,您的工作会变得…

zabbix、netdata和glances,做最简单的系统资源监控

软件需要显示服务器的资源信息(CPU、内存、网络、硬盘等),但是软件是在Docker容器中运行。 目前方案 通过ssh在主机上远程运行ps、free等指令,获取相应的信息。这种方案需要代码配置主机的IP,以及用户名和密码&#…

指针(笔记1)

一、内存和地址 内存及其管理方法: 1.计算机主存储器由一个一个存储单元组成,微型计算机以字节作为存储单元 2.内存区的每一个字节有一个唯一的编号,这就是“地址”,它相当于教学楼中的教室号 3.内存地址,是一个无符号整数(un…

04.仿简道云公式函数实战-QLExpress基础语法

1. 前言 小伙伴大家好,在上一篇文章我们简单初探了QLExpress表达式引擎,我们简单写了一个HelloWorld的程序,并成功的运行期望的结果。在本篇文章中我们来熟悉一下QLExpress的语法,因为我们在后面简道云公式实战的时候&#xff0c…

java之SpringBoot开发实用篇

MENU SpringBoot开发实用篇KF-1.热部署KF-1-1.手动启动热部署KF-1-2.自动启动热部署KF-1-3.参与热部署监控的文件范围配置KF-1-4.关闭热部署 KF-2.配置高级KF-2-1.ConfigurationPropertiesKF-2-2.宽松绑定/松散绑定KF-2-3.常用计量单位绑定KF-2-4.校验KF-2-5.数据类型转换 KF-3…

MFC CLXHHandleEngine动态库-自定义设置对话框使用

实现的效果如下所示: void CSampleDlg::OnBnClickedButton2() { // TODO: 在此添加控件通知处理程序代码 CSgxMemDialog dlg(180, 100); dlg.SetEnable(true); dlg.SetWindowTitle(_T("自定义对话框")); dlg.AddStatic(1000, //控件资源…

Sbatch, Salloc提交任务相关

salloc 申请计算节点,然后登录到申请到的计算节点上运行指令; salloc的参数与sbatch相同,该部分先介绍一个简单的使用案例;随后介绍一个GPU的使用案例;最后介绍一个跨节点使用案例; 首先是一个简单的例子&a…

SpringBoot整合ZXing创建二维码和条形码

文章目录 1、引入依赖2、Service层实现3、Controller4、效果 之前SpringSecurity时,登录用到了图片验证码辅助登录:【 整合hutool实现集成图片验证码】,以下为整合zxing实现二维码和条形码的生成。 1、引入依赖 引入ZXing依赖的坐标&#x…

探索未来新趋势:鸿蒙系统的崭新时代

探索未来新趋势:鸿蒙系统的崭新时代 随着科技的不断发展,操作系统作为计算机和移动设备的核心,扮演着至关重要的角色。近年来,一种备受瞩目的操作系统——鸿蒙系统(HarmonyOS)崭露头角,正引领着…

Servlet学习笔记

简介 浏览器请求处理流程:浏览器发请求 > 服务器tomcat( > 应用程序 ( > servlet) ) Servlet应用的三大作用域:request,session,application tomcat存放项目的层级结构 注释:servlet原引用包名 javax.serv…

城市道路积水如何有效预警?内涝积水监测仪效果

在城市中道路积水是一个常见的问题,特别是在暴雨季节还可能形成城市内涝。为了解决这个问题建立一个有效的预警系统是至关重要的。城市内涝积水监测仪应该能够实时监测道路积水情况,并及时向后台工作人员发出警报,以便他们能够采取适当的措施…

mysql中的DQL查询

表格为: DQL 基础查询 语法:select 查询列表 from 表名:(查询的结果是一个虚拟表格) -- 查询指定的列 SELECT NAME,birthday,phone FROM student -- 查询所有的列 * 所有的列, 查询结果是虚拟的表格&am…