【论文笔记】Gemini: A Family of Highly Capable Multimodal Models——细看Gemini

Gemini

【一句话总结,对标GPT4,模型还是transformer的docoder部分,提出三个不同版本的Gemini模型,Ultra的最牛逼,Nano的可以用在手机上。】

谷歌提出了一个新系列多模态模型——Gemini家族模型,包括Ultra,Pro,Nano(1.5B Nano-1,3.25BNano-2)三种尺寸(模型由大到小)。在图像、音频、视频和文本理解方面都表现出现,Gemini Ultra在32个benchmarks实现了30个sota。在MMLU中甚至达到了人类专家的性能。
Bard具体使用体验待更新…

1. 引言

Gemini的目标:建立一个模型,该模型不仅具有跨模态的强大通用能力,而且在每个领域都具有尖端的理解和推理性能。

Gemini 1.0 包括三个版本:Ultra 适用于高度复杂的任务,Pro 适用于高性能和大规模部署的场景,Nano 适用于设备上的应用。

Gemini Ultra,在文本推理上实现10/12,图片理解9/9,视频理解6/6,语音识别和翻译5/5。

Untitled

AlphaCode 团队基于Gemini构建出AlphaCode2,在 Codeforces 竞技编程平台的参赛者中名列前 15%,与名列前 50%的前代产品相比有了很大提高。

此外,还发布了Gemini Nana【针对边缘计算设备的,这个蛮有意思的,想体验一下。】

在下面的章节中,首先概述了模型架构、训练基础设施和训练数据集。然后,介绍了 Gemini 模型系列的详细评估,其中包括文本、代码、图像、音频和视频方面经过充分研究的基准和人类偏好评估–其中包括英语性能和多语言能力。讨论了作者负责任的部署方法2,包括影响评估、制定模型政策、评估以及在部署决策前减轻危害的过程。最后,讨论了 Gemini 的广泛影响、局限性及其潜在应用–为人工智能研究与创新的新时代铺平道路。

2. 模型架构

模型同样使用的Transformer的Decoder部分,对模型架构和的模型优化进行了改进。最大支持32K上下文。

Untitled

Gemini的输入可以是文字与各种音频和视觉的组合(如自然图像、图表、截图、PDF 和视频),输出是为文本和图像。The visual encoding of Gemini models is inspired by our own foundational work on Flamingo (Alayrac et al., 2022), CoCa (Yu et al., 2022a), and PaLI (Chen et al., 2022), with the important distinction that the models are multimodal from the beginning and can natively output images using discrete image tokens (Ramesh et al., 2021; Yu et al., 2022b).【视觉编码是来源于下面这些工作的。】

视频理解是通过将视频编码为大型上下文窗口中的帧序列来实现的。视频帧或图像可与文本或音频自然交错,作为模型输入的一部分。

Gemini 可以直接从通用语音模型(USM)(Zhang 等人,2023 年)特征中获取 16kHz 的音频信号。这使得该模型能够捕捉到音频被简单地映射到文本输入时通常会丢失的细微差别(例如,请参阅网站上的音频理解演示)

Untitled

3. 训练基础设施

用的是Google自己的TPU资源。【图片来自Gemini的blog,每一次看都感觉很震撼……大力出奇迹】

在这里插入图片描述

4. 训练数据集

预训练数据集使用了来自网络文档、书籍和代码的数据,还包括图像、音频和视频数据

tokenizer使用的是SentencePiece tokenizer。并且发现,在整个训练语料库的大量样本上训练标记化器可以提高推断词汇量,从而提高模型性能。例如,发现 Gemini 模型可以有效地标记非拉丁文【比如汉语】脚本,这反过来又有利于提高模型质量以及训练和推理速度。用于训练最大模型的token数量是按照霍夫曼等人(2022)的方法确定的。对于较小的模型,则使用更多的token进行训练,以提高给定推理预算下的性能,这与 Touvron 等人(2023a)所提倡的方法类似。

我们使用启发式规则和基于模型的分类器对所有数据集进行质量过滤。我们还进行了安全过滤,以去除有害内容。我们从训练语料库中过滤评估集。最终的数据混合物和权重是通过对较小模型的消减确定的。我们进行阶段性训练,以便在训练过程中改变混合物的组成–在训练接近尾声时增加领域相关数据的权重。我们发现,数据质量对高性能模型至关重要,并认为在寻找预训练的最佳数据集分布方面仍存在许多有趣的问题。

5. Evalution

Gemini 模型是原生的多模态模型,因为它们是跨文本、图像、音频和视频进行联合训练的。一个悬而未决的问题是,这种联合训练是否能产生一个在每个领域都有强大能力的模型–即使与狭隘地针对单一领域的模型和方法相比也是如此。我们发现情况确实如此:在广泛的文本、图像、音频和视频基准测试中,Gemini 树立了新的技术典范。

5.1. Text

5.1.1. Academic Benchmarks

在一系列基于文本的学术基准测试中,我们将 Gemini Pro 和 Ultra 与一套外部 LLM 和我们之前的最佳模型 PaLM 2 进行了比较,测试内容包括推理、阅读理解、STEM 和编码。我们在表 2 中报告了这些结果。总的来说,我们发现 Gemini Pro 的性能优于 GPT-3.5 等推理优化模型,并可与现有的几种能力最强的模型相媲美,而 Gemini Ultra 则优于目前所有的模型。

我们发现,当 Gemini Ultra 与考虑到模型不确定性的思维链提示方法(Wei 等人,2022 年)结合使用时,其准确率最高。该模型会产生一个包含 k 个样本(例如 8 个或 32 个)的思维链。如果存在高于预设阈值的共识(根据验证分割选择),它就会选择这个答案,否则就会返回到基于最大似然选择的贪婪样本,而不进行思维链。【这个CoT@32….挺有意思】

Untitled

5.1.2. Trends in Capabilities

Untitled

5.1.3. Nano

【个人感觉Nano是最友好的,Nano-1:1.8B的参数,Nano-2:3.25B的参数】

Untitled

5.1.4. Multilinguality

多语言翻译

Untitled

多语言数学与总结

Untitled

5.1.5. Long Context

Gemini是在32768个token的情况下进行训练的【seq_len = 32768】

Untitled

5.1.6. Human Preference Evaluations

Untitled

5.1.7. Complex Reasoning Systems

5.2. Multimodal

双子座模型天生就是多模态的。如图 5 和图 12 所示,这些模型具有独特的能力,能将其跨模态能力(如从表格、图表或图形中提取信息和空间布局)与语言模型的强大推理能力(如其在数学和编码方面的一流性能)无缝结合起来。这些模型在辨别输入中的细粒度细节、聚合跨时空的上下文以及将这些能力应用于与时间相关的视频帧和/或音频输入序列方面也表现出色。下文将对模型在不同模式(图像、视频和音频)下的表现进行更详细的评估,并举例说明模型在图像生成方面的能力以及在不同模式下整合信息的能力。

5.2.1. Image Understanding

Untitled

Untitled

Untitled

Untitled

5.2.2. Video Understanding

从每个视频片段中抽取 16 个间隔相等的帧,并将其输入 Gemini 模型

Untitled

5.2.3. Image Generation

Untitled

5.2.4. Audio Understanding

Untitled

Untitled

5.2.5. Modality Combination

Untitled

6. Responsible Deployment

Untitled

6.1. Impact Assessment

6.2. Model Policy

6.3. Evaluations

6.4. Mitigations

6.4.1. Data

6.4.2. Instruction Tuning

指令调整包括监督微调(SFT)和使用奖励模型通过人类反馈进行强化学习(RLHF)。我们在文本和多模式设置中应用指令调整。指令调整配方经过精心设计,以平衡帮助性的增加和与安全性和幻觉相关的模型危害的减少(Bai 等人,2022a)。 “质量”数据的管理对于 SFT、奖励模型训练和 RLHF 至关重要。使用较小的模型消除数据混合比率,以平衡有用性(例如遵循指令、创造力)和模型危害减少的指标,并且这些结果可以很好地推广到较大的模型。我们还观察到,数据质量比数量更重要(Touvron et al., 2023b; Zhou et al., 2023),特别是对于较大的模型。同样,对于奖励模型训练,我们发现平衡数据集与模型更喜欢说“我无能为力”的示例(出于安全原因)和模型输出有用响应的示例至关重要。我们使用多目标优化以及有用性、真实性和安全性奖励分数的加权总和来训练多头奖励模型。我们进一步阐述了降低有害文本生成风险的方法。我们在各种用例中列举了大约 20 种伤害类型(例如仇恨言论、提供医疗建议、建议危险行为)。我们生成这些类别中潜在危害性查询的数据集,要么由政策专家和机器学习工程师手动生成,要么通过以主题关键字作为种子提示高性能语言模型来生成。考虑到会造成伤害的查询,我们探索 Gemini 模型并通过并排评估来分析模型响应。如上所述,我们平衡了模型输出响应无害与有帮助的目标。根据检测到的风险区域,我们创建额外的监督微调数据来展示理想的响应。

6.4.3. Factuality

6.4.3. Factuality

6.6. Responsible Governance

7. Discussion and Conclusion

【一句话总结:Gimini最牛逼,是谷歌集大成之作】

除了基准测试中最先进的结果之外,我们最兴奋的是 Gemini 模型支持的新用例。 Gemini 模型的新功能可解析复杂图像(例如图表或信息图表),对图像、音频和文本的交错序列进行推理,并在响应时生成交错文本和图像,从而开启了各种新应用。正如报告和附录中的数据所示,Gemini 可以在教育、日常问题解决、多语言交流、信息总结、提取和创造力等领域实现新方法。我们期望这些模型的用户会发现各种有益的新用途,而这些用途在我们自己的调查中只触及了表面。

Gemini 是我们朝着解决智能问题、推进科学发展和造福人类的使命迈出的又一步,我们热切地希望看到 Google 及其他公司的同事如何使用这些模型。我们建立在机器学习、数据、基础设施和负责任的开发方面的许多创新之上,这些都是我们在 Google 十多年来一直追求的领域。我们在本报告中提出的模型为我们更广泛的未来目标提供了坚实的基础,即开发一个大规模、模块化的系统,该系统将在多种模式中具有广泛的泛化能力。

8. 人员

9. Appendix

9.1. Chain-of-Thought Comparisons on MMLU benchmark

9.2. Capabilities and Benchmarking Tasks

9.3. Qualitative Examples

9.3.1. Chart understanding and reasoning over data

9.3.2. Multimodal question answering

9.3.3. Interleaved image and text generation

9.3.4. Image understanding and reasoning

9.3.5. Geometrical reasoning

9.3.6. Information seeking about objects

9.3.7. Multimodal reasoning based on visual cues

9.3.8. Multimodal humor understanding

9.4. Commonsense reasoning in a multilingual setting

9.4.1. Reasoning and code generation

9.4.2. Mathematics: Calculus

9.5. Multi-step reasoning and mathematics

9.5.1. Complex image understanding, code generation, and instruction following

9.5.2. Video understanding and reasoning

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/234711.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

jenkins设置中文

安装以下两个插件 Locale plugin Localization: Chinese (Simplified) 在jenkins的system配置中找到locale配置项 在locale配置项的默认语言中填入以下内容保存 zh_CN 重启jenkins即可

Gitzip插件【Github免翻下载】

今天给大家推荐一个github下载的插件,平常大家下载应该无外乎就是以下两种: Download zip利用git clone 但是这两种各有各的弊端,前者一般需要科学上网才可以,后者下载不稳定经常中途断掉。 今天给推荐一个款浏览器插件-Gitzip.大…

uniApp应用软件在运行时,不符合华为应用市场审核标准。解决方案合集!

(暂时用不到的也建议收藏一下,因为文章持续更新中) 最新更改时间:20023-12-10 第一次做App应用开发相信大家一定都遇到过华为应用市场审核的“驳回”! 有些问题一看就明白可以立马修改,而有一些问题修改意…

【计算机网络基础1】网络层次划分和OSI七层网络模型

1、网络层次划分 为了使不同计算机厂家生产的计算机能够相互通信,以便在更大的范围内建立计算机网络,国际标准化组织(ISO)在1978年提出了"开放系统互联参考模型",即著名的OSI/RM模型(Open Syste…

软件工程考试复习

第一章、软件工程概述 🌟软件程序数据文档(考点) 🌟计算机程序及其说明程序的各种文档称为 ( 文件 ) 。计算任务的处理对象和处理规则的描述称为 ( 程序 )。有关计算机程序功能、…

C语言 内联函数 + 递归函数

函数分类 内联函数 1)内联函数在编译时将函数的代码直接插入到调用它的地方,而不是通过函数调用的方式执行,从而减少了函数调用的开销,提高了代码的执行速度 2)使用 inline 关键字来声明 3)将函数声明为内联…

分层网络模型(OSI、TCP/IP)及对应的网络协议

OSI七层网络模型 OSI(Open System Interconnect),即开放式系统互连参考模型, 一般都叫OSI参考模型,是ISO组织于1985年研究的网络互连模型。OSI是分层的体系结构,每一层是一个模块,用于完成某种功…

pytorch一致数据增强

分割任务对 image 做(某些)transform 时,要对 label(segmentation mask)也做对应的 transform,如 Resize、RandomRotation 等。如果对 image、label 分别用 transform 处理一遍,则涉及随机操作的…

【概率方法】朗之万动力学 Langevin Dynamics

目前我们了解到采样方法有很多种,按照从朴素到高效的演变顺序大致是 反函数采样蒙特卡洛模拟(求统计量)接受-拒绝采样MCMC HM 算法Gibbs 采样 接上一篇文章,Gibbs 采样能在有条件分布 p ( x d ′ ∣ x − d ) p(\mathbf{x}_{d…

头歌-Python 基础

第1关:建模与仿真 1、 建模过程,通常也称为数学优化建模(Mathematical Optimization Modeling),不同之处在于它可以确定特定场景的特定的、最优化或最佳的结果。这被称为诊断一个结果,因此命名为▁▁▁。 填空1答案:决…

【数据挖掘】国科大苏桂平老师数据库新技术课程作业 —— 第四次作业

云数据库研究 云计算与云数据库背景 云计算(cloud computing)是 IT 技术发展的最新趋势,正受到业界和学术界的广泛关注。云计算是在分布式处理、并行处理和网格计算等技术的基础上发展起来的,是一种新兴的共享基础架构的方法。它…

大数据技术7:基于StarRocks统一OALP实时数仓

前言: 大家对StarRocks 的了解可能不及 ClickHouse或者是远不及 ClickHouse 。但是大家可能听说过 Doris ,而 StarRocks 实际上原名叫做 Doris DB ,他相当于是一个加强版的也就是一个 Doris ,也就是说 Doris 所有的功能 StarRocks 都是有的&a…

this.$emit(‘update:isVisible‘, false)作用

这个写是不是很新颖&#xff0c;传父组件传值&#xff01;这是什么鬼。。。 假设你有以下逻辑业务。在A页面弹出一个组件B&#xff0c;A组件里面使用B组件&#xff0c;是否展示B组件你使用的是baselineShow变量控制&#xff01; <BaselineData :isVisible.sync"basel…

SQL命令---修改字段的排列位置

介绍 使用sql语句表字段的排列顺序。 命令 alter table 表名 modify 字段名1 数据类型 first|after 字段名2;例子 将a表中的age字段改为表的第一个字段。 alter table a modify age int(12) first;下面是执行命令后的表结构&#xff1a; 将a表中的age字段放到name字段之…

ELK简单介绍二

学习目标 能够部署kibana并连接elasticsearch集群能够通过kibana查看elasticsearch索引信息知道用filebeat收集日志相对于logstash的优点能够安装filebeat能够使用filebeat收集日志并传输给logstash kibana kibana介绍 Kibana是一个开源的可视化平台,可以为ElasticSearch集群…

linux 15day apache apache服务安装 httpd服务器 安装虚拟主机系统 一个主机 多个域名如何绑定

目录 一、apache安装二、访问控制总结修改默认网站发布目录 三、虚拟主机 一、apache安装 [rootqfedu.com ~]# systemctl stop firewalld [rootqfedu.com ~]# systemctl disable firewalld [rootqfedu.com ~]# setenforce 0 [rootqfedu.com ~]# yum install -y httpd [rootqfe…

用23种设计模式打造一个cocos creator的游戏框架----(十二)状态模式

1、模式标准 模式名称&#xff1a;状态模式 模式分类&#xff1a;行为型 模式意图&#xff1a;允许一个对象在其内部状态改变时改变它的行为。对象看起来似乎修改了它的类。 结构图&#xff1a; 适用于&#xff1a; 1、一个对象的行为决定于它的状态&#xff0c;并且它必须…

记录一次云原生线上服务数据迁移全过程

文章目录 背景迁移方案调研迁移过程服务监控脚本定时任务暂停本地副本服务启动&#xff0c;在线服务下线MySQL 数据迁移Mongo 数据迁移切换新数据库 ip 本地服务启动数据库连接验证服务打包部署服务重启前端恢复正常监控脚本定时任务启动旧服务器器容器关闭 迁移总结 背景 校园…

代码随想录二刷 |二叉树 |101. 对称二叉树

代码随想录二刷 &#xff5c;二叉树 &#xff5c;101. 对称二叉树 题目描述解题思路 & 代码实现递归法迭代法使用队列使用栈 题目描述 101.对称二叉树 给你一个二叉树的根节点 root &#xff0c; 检查它是否轴对称。 示例 1&#xff1a; 输入&#xff1a;root [1,2,2,…

adb unauthorized 踩坑记录

给Realme X7 Pro 安装Root后&#xff0c;发现adb连接设备呈现unauthorized 状态&#xff1a; 在Google以后&#xff0c;尝试了很多方案&#xff0c;均无效&#xff0c;尝试的方案如下&#xff1a; 重启手机&#xff0c;电脑。不行撤销调试授权&#xff0c;开关usb调试&#xf…