大数据技术7:基于StarRocks统一OALP实时数仓

前言: 大家对StarRocks 的了解可能不及 ClickHouse或者是远不及 ClickHouse 。但是大家可能听说过 Doris ,而 StarRocks 实际上原名叫做 Doris DB ,他相当于是一个加强版的也就是一个 Doris+ ,也就是说 Doris 所有的功能 StarRocks 都是有的,但是 StarRocks 有的这种加速的功能 Doris 目前是没有的。我们可以基于 Apache Doris 统一 OLAP 技术栈,满足庞大数据体量下的实时分析与极速查询。


1、什么是StarRocks?

StarRocks原名DorisDB,StarRocks 是 Apache Doris 的 Fork 版本。StarRocks 是新一代极速全场景 MPP (Massively Parallel Processing) 数据库。StarRocks 是一款高性能分析型数据仓库,使用向量化、MPP 架构、CBO、智能物化视图、可实时更新的列式存储引擎等技术实现多维、实时、高并发的数据分析。StarRocks 既支持从各类实时和离线的数据源高效导入数据,也支持直接分析数据湖上各种格式的数据。StarRocks 兼容 MySQL 协议,可使用 MySQL 客户端和常用 BI 工具对接。同时 StarRocks 具备水平扩展,高可用、高可靠、易运维等特性。广泛应用于实时数仓、OLAP 报表、数据湖分析等场景。

StarRocks 架构简洁,采用了全面向量化引擎,并配备全新设计的 CBO (Cost Based Optimizer) 优化器,查询速度(尤其是多表关联查询)远超同类产品。

  • StarRocks 能很好地支持实时数据分析,并能实现对实时更新数据的高效查询。StarRocks 还支持现代化物化视图,进一步加速查询。

  • 多分布式 Join极速引擎,这个分布式 Join 目前就是 ClickHouse 比较缺乏的一个功能。如果了解 spark 或者了解 presto 的话,其实都应该知道这都是有的,就是说这个其实就是做 Shuffle ,就是把不同的 Key 给 Shuffle 到同一个 bucket 里边,然后再去做 Join ,然后右边实际上是一个更加高效的一种 Join 方式也就是提前的去做好了这个 bucket 的分类,也就是说同一个 Key,两张表相同的 Key ,全部落到同一个 bucket 的范围,然后这个 bucket 的之间肯定是没有 over lap ,所以可以放心的做这个Colocate  joy ,在这个 spark 里面也叫 bucket join 。

  • 使用 StarRocks,用户可以灵活构建包括大宽表、星型模型、雪花模型在内的各类模型。

  • StarRocks 兼容 MySQL 协议,支持标准 SQL 语法,易于对接使用,全系统无外部依赖,高可用,易于运维管理。StarRocks 还兼容多种主流 BI 产品,包括 Tableau、Power BI、FineBI 和 Smartbi。


2、使用Doris替换ClickHouse、Kylin和Druid

这里有一家电子商务SaaS提供商,其数据系统提供实时和离线报告、客户分割和日志分析服务。最初,他们为这些不同的目的使用了不同的OLAP引擎:

  • Apache Kylin用于离线报告:该系统为超过500万个卖家提供离线报告服务。其中的大型卖家拥有超过1000万注册会员和100,000个SKU,详细信息放在平台上的400多个数据立方体中。

  • ClickHouse用于客户分割和Top-N日志查询:这需要高频更新、高QPS和复杂的SQL。

  • Apache Druid用于实时报告:卖家通过组合不同的维度提取所需的数据,这种实时报告需要快速的数据更新、快速的查询响应和系统的强大稳定性。

图片

这三个组件都有各自的痛点:

  • Apache Kylin在固定表模式下运行良好,但每次添加维度时,需要创建一个新的数据立方体并在其中重新填充历史数据。

  • ClickHouse不适用于多表join处理,因此需要额外的解决方案来进行联合查询和多表连接查询。在高并发场景下,它的表现低于预期。

  • Apache Druid实现了幂等写入,因此它本身不支持数据更新或删除。这意味着当上游出现问题时,需要进行完整的数据替换。如果您从头到尾考虑所有数据备份和移动,这样的数据修复是一个多步骤的过程。此外,新摄入的数据在放入Druid中的段之前将无法用于查询。这意味着存在更长的时间窗口,从而导致上下游之间的数据不一致。

由于它们共同工作,这种架构可能太难以维护,因为它需要在开发、监控和维护方面了解所有这些组件。此外,每次用户扩展集群时,他们必须停止当前集群并迁移所有数据库和表,这不仅是一个巨大的任务,而且会对业务造成巨大的干扰。基于上述架构痛点,友赞对市面上的架构进行了调研与选型,希望选择一款能够简化当前复杂架构、统一 OLAP 技术栈的引擎。他们除了分析 OLAP 性能本身对于业务的帮助,还需要评估架构改造所带来的收益成本比,思考架构进行迁移和重构之后所带来的 ROI 是否符合预期。

图片

Apache Doris填补了这些空白。

  • 查询性能:Doris擅长高并发查询和JOIN连接查询,并且现在配备了倒排索引以加速日志搜索。

  • 数据更新:Doris的唯一键模型支持大容量更新和高频实时写入,而重复键模型和唯一键模型支持部分列更新。它还提供数据写入的恰好一次保证,并确保基表、物化视图和副本之间的一致性。

  • 维护:Doris与MySQL兼容。它支持轻松扩展和轻量级模式更改。它配备了自己的集成工具,如Flink-Doris-Connector和Spark-Doris-Connector。


3、 StarRocks和ClickHouse压测性能对比

这里比较了两个组件在SQL和连接查询方案上的性能,并计算了Apache Doris的CPU和内存消耗。

2.1 SQL查询性能

Apache Doris在16个SQL查询中的10个中表现优于ClickHouse,最大的性能差距比例接近30。总体而言,Apache Doris比ClickHouse快2~3倍。

图片

2.2 连接查询性能

对于连接查询测试,使用了不同大小的主表和维表。

  • 主表:用户活动表(40亿行)、用户属性表(250亿行)和用户属性表(960亿行)

  • 维表:100万行、1000万行、5000万行、1亿行、5亿行、10亿行和25亿行。

测试包括完全连接查询和过滤连接查询。完全连接查询连接主表和维表的所有行,而过滤连接查询使用WHERE过滤器检索特定卖家ID的数据。结果如下:

主表(40亿行):

  • 完全连接查询:Doris在所有维表的完全连接查询中均优于ClickHouse。随着维表变大,性能差距越来越大。最大的差距比例接近5。

  • 过滤连接查询:基于卖家ID,过滤器从主表中筛选出了4100万行。对于小型维表,Doris比ClickHouse快2~3倍;对于大型维表,Doris比ClickHouse快10倍以上;对于大于1亿行的维表,ClickHouse会抛出OOM错误,而Doris则正常运行。

主表(250亿行):

  • 完全连接查询:Doris在所有维表的完全连接查询中均优于ClickHouse。ClickHouse在维表大于5000万行时会产生OOM错误。

  • 过滤连接查询:过滤器从主表中筛选出了5.7亿行。Doris在几秒钟内响应,而ClickHouse在连接大型维表时完成时间为几分钟,并在此过程中崩溃。

主表(960亿行):

Doris在所有查询中都表现出相对较快的性能,而ClickHouse无法执行所有查询。

在CPU和内存消耗方面,Apache Doris在所有大小的连接查询中都保持稳定的集群负载。


参考链接:

从 Clickhouse 到 Apache Doris:有赞业务场景下性能测试与迁移验证

开源大数据 OLAP 引擎最佳实践 | 学习笔记(二)-阿里云开发者社区

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/234696.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

this.$emit(‘update:isVisible‘, false)作用

这个写是不是很新颖&#xff0c;传父组件传值&#xff01;这是什么鬼。。。 假设你有以下逻辑业务。在A页面弹出一个组件B&#xff0c;A组件里面使用B组件&#xff0c;是否展示B组件你使用的是baselineShow变量控制&#xff01; <BaselineData :isVisible.sync"basel…

SQL命令---修改字段的排列位置

介绍 使用sql语句表字段的排列顺序。 命令 alter table 表名 modify 字段名1 数据类型 first|after 字段名2;例子 将a表中的age字段改为表的第一个字段。 alter table a modify age int(12) first;下面是执行命令后的表结构&#xff1a; 将a表中的age字段放到name字段之…

ELK简单介绍二

学习目标 能够部署kibana并连接elasticsearch集群能够通过kibana查看elasticsearch索引信息知道用filebeat收集日志相对于logstash的优点能够安装filebeat能够使用filebeat收集日志并传输给logstash kibana kibana介绍 Kibana是一个开源的可视化平台,可以为ElasticSearch集群…

linux 15day apache apache服务安装 httpd服务器 安装虚拟主机系统 一个主机 多个域名如何绑定

目录 一、apache安装二、访问控制总结修改默认网站发布目录 三、虚拟主机 一、apache安装 [rootqfedu.com ~]# systemctl stop firewalld [rootqfedu.com ~]# systemctl disable firewalld [rootqfedu.com ~]# setenforce 0 [rootqfedu.com ~]# yum install -y httpd [rootqfe…

用23种设计模式打造一个cocos creator的游戏框架----(十二)状态模式

1、模式标准 模式名称&#xff1a;状态模式 模式分类&#xff1a;行为型 模式意图&#xff1a;允许一个对象在其内部状态改变时改变它的行为。对象看起来似乎修改了它的类。 结构图&#xff1a; 适用于&#xff1a; 1、一个对象的行为决定于它的状态&#xff0c;并且它必须…

记录一次云原生线上服务数据迁移全过程

文章目录 背景迁移方案调研迁移过程服务监控脚本定时任务暂停本地副本服务启动&#xff0c;在线服务下线MySQL 数据迁移Mongo 数据迁移切换新数据库 ip 本地服务启动数据库连接验证服务打包部署服务重启前端恢复正常监控脚本定时任务启动旧服务器器容器关闭 迁移总结 背景 校园…

代码随想录二刷 |二叉树 |101. 对称二叉树

代码随想录二刷 &#xff5c;二叉树 &#xff5c;101. 对称二叉树 题目描述解题思路 & 代码实现递归法迭代法使用队列使用栈 题目描述 101.对称二叉树 给你一个二叉树的根节点 root &#xff0c; 检查它是否轴对称。 示例 1&#xff1a; 输入&#xff1a;root [1,2,2,…

adb unauthorized 踩坑记录

给Realme X7 Pro 安装Root后&#xff0c;发现adb连接设备呈现unauthorized 状态&#xff1a; 在Google以后&#xff0c;尝试了很多方案&#xff0c;均无效&#xff0c;尝试的方案如下&#xff1a; 重启手机&#xff0c;电脑。不行撤销调试授权&#xff0c;开关usb调试&#xf…

持续集成交付CICD:Jenkins配置Nexus制品发布

目录 一、实验 1.Jenkins配置Nexus制品发布 一、实验 1.Jenkins配置Nexus制品发布 &#xff08;1&#xff09;策略 发布其实就是下载制品&#xff0c;然后将制品发送到目标主机&#xff0c;最后通过脚本或者指令启动程序。 &#xff08;2&#xff09;安装Maven Artifact …

基于JavaWeb+SSM+Vue马拉松报名系统微信小程序的设计和实现

基于JavaWebSSMVue马拉松报名系统微信小程序的设计和实现 源码获取入口Lun文目录前言主要技术系统设计功能截图订阅经典源码专栏Java项目精品实战案例《500套》 源码获取 源码获取入口 Lun文目录 1系统概述 1 1.1 研究背景 1 1.2研究目的 1 1.3系统设计思想 1 2相关技术 2 2.…

SQL命令---添加新字段

介绍 使用sql语句为表添加新字段。 命令 alter table 表名 add 新字段名 数据类型;例子 向a表中添加name字段&#xff0c;类型为varchar(255)。 alter table a add name varchar(255);下面是执行添加有的表结构&#xff1a;

react之项目打包,本地预览,路由懒加载,打包体积分析以及如何配置CDN

react之项目打包,本地预览,路由懒加载,打包体积分析以及如何配置CDN 一、项目打包二、项目本地预览三、路由懒加载四、打包体积分析五、配置CDN 一、项目打包 执行命令 npm run build根目录下生成的build文件夹 及时打包后的文件 二、项目本地预览 1.全局安装本地服务包 npm…

内存分配器

实现分配器需要考虑的问题 空闲块的组织方式&#xff1a;如何记录现有的空闲块空闲块的选择&#xff1a;如何选择一个合适的空闲块空闲块的分割&#xff1a;选择了一个合适的空闲块后如何处理空闲块内部的剩余部分空闲块的合并&#xff1a;如何处理一个刚刚被释放的块&#xf…

Python sqlalchemy使用

基本结构 #!/usr/bin/python3 # -*- coding:utf-8 -*- """ author: JHC file: base_db.py time: 2023/6/19 21:34 desc: """ from sqlalchemy import create_engine,text from sqlalchemy.orm import sessionmaker,scoped_session from contex…

计算机服务器中了Mallox勒索病毒怎么解密,Mallox勒索病毒解密步骤

计算机网络技术的不断发展与应用&#xff0c;为企业的生产运营提供了坚实的基础&#xff0c;大大提高了企业的生产与工作效率&#xff0c;但随之而来的网络安全威胁也在不断增加。在本月&#xff0c;云天数据恢复中心接到了很多企业的求助&#xff0c;企业的计算机服务器遭到了…

Nacos源码解读12——Nacos中长连接的实现

短连接 VS 长连接 什么是短连接 客户端和服务器每进行一次HTTP操作&#xff0c;就建立一次连接&#xff0c;任务结束就中断连接。 长连接 客户端和服务器之间用于传输HTTP数据的TCP连接不会关闭&#xff0c;客户端再次访问这个服务器时&#xff0c;会继续使用这一条已经建立…

数理统计基础:参数估计与假设检验

在学习机器学习的过程中&#xff0c;我充分感受到概率与统计知识的重要性&#xff0c;熟悉相关概念思想对理解各种人工智能算法非常有意义&#xff0c;从而做到知其所以然。因此打算写这篇笔记&#xff0c;先好好梳理一下参数估计与假设检验的相关内容。 1 总体梳理 先从整体结…

【Spring 基础】00 入门指南

【Spring 基础】00 入门指南 文章目录 【Spring 基础】00 入门指南1.简介2.概念1&#xff09;控制反转&#xff08;IoC&#xff09;2&#xff09;依赖注入&#xff08;DI&#xff09; 3.核心模块1&#xff09;Spring Core2&#xff09;Spring AOP3&#xff09;Spring MVC4&…

用python 网络自动化统计交换机有多少端口UP

用python统计交换机有多少端口UP 用python统计交换机有多少端口UP&#xff0c;可以间接的反馈有多少个用户在线。我们使用上次的脚本将可达的网络设备ip统计到reachable_ip.txt中&#xff0c;这次我们使用reachable_ip.txt来登陆设备来统计多少端口是UP的 云配置 拓扑 交换机…

ModuleNotFoundError: No module named ‘docx‘

ModuleNotFoundError: No module named ‘docx’ 文章目录 ModuleNotFoundError: No module named docx背景报错问题报错翻译报错位置代码报错原因解决方法今天的分享就到此结束了 背景 在使用之前的代码时&#xff0c;报错&#xff1a; Traceback (most recent call last): Fi…