体系化学习运筹学基础算法的实践和总结

文章目录

  • 引言
  • 目标设计
  • 目标实践
  • 文章汇总
  • 经验总结
  • 一则预告

引言

眨眼间已经12月了,眼看着2023年马上要过完了。

女朋友最近总说,工作以后感觉时间过的好快。事实上,我也是这么认为的。年纪越大,越会担心35岁危机的降临。所以,人还是应该持续学习和进步的。具体来说,就是在工作时间之外,每年都能有一些关于自身的成长。

23年初,我给自身成长设置了一系列目标,其中之一就是体系化。这里的体系化,主要包含两项,第一项是运筹学基础算法的体系化,第二项是机器学习算法的体系化。到了年尾,应该为一年的工作做一个总结了。

本文将着重分享今年在第一项(运筹学基础算法)上的实践和总结,后续文章将再聊另外一个内容。

正文见下。

目标设计

科学体系化的方式,私以为应该是参考各种专业书的目录,然后结合自己的认知,做个性化设计。 举个例子,《运筹学》(清华大学出版社)这本书是直接从线性规划问题开始的,但是求解线性规划问题的单纯形法,对我来说已经比较复杂,不能算入门了。

下图是我今年初给自己安排的体系化学习目标。

我认为,学习过程要从简单到复杂。而最简单的运筹问题,应该是一维无约束问题,在此基础上再提升问题维度和增加不同类型的约束条件。这些内容,在我年初的体系化学习目标中被归类为非线性规划模块。现在想来,“非线性规划”这个模块的标题并不是很准确,不过也没想到更好的,就继续用这个吧。

理解了以上普适性较好的基本算法体系后,我觉得才适合来研究线性/整数规划这一类在实际业务中被广泛研究的问题和对应的求解算法。

除了非线性规划、线性规划和整数规划外,还要学习智能优化算法的主要原因,是我觉得这些算法的改进尝试中,针对迭代方向和迭代步长的设计很有艺术感,虽然缺乏严格的数学证明,但在实践中已经被证明为非常有效的手段。

目标实践

对于大部分算法,我给自己预设的目标是两周学习完,这样最终评估下来能有19周的剩余时间。

从剩余时间来说,我给自己安排的计划,算是比较宽松的。我一直觉得,工作和学习应该是为生活服务的,如果发生了冲突,那幸福的生活体验应该放在第一位。所以我从一开始就没想着给自己太大的压力,如果觉得有些累了,偷懒玩游戏、看视频,甚至只是无聊发呆,也不会有太大的负罪感。

实际也是如此——从完成度来看,我最后一篇文章是VNS,11月12号完成的,距离12月31号只剩6周,也就是说我在年中的时候荒废了13周左右的时间。

我对算法学习完成的定义是,写一篇与算法内容对应的文章,里面至少应该包含2个模块:

第一个是用自己的逻辑描述清楚算法原理。我对自己的要求是,让算法小白都能看懂内容,如果未来真的有机会教书育人,这应该是我宝贵的财富了;

第二个是自己编写代码实现算法全过程。我对自己的要求是,分别用Python和Java编程实现,以验证自己是否真的理解了算法原理,同时提升代码能力。

从实际完成度来看,每一个算法相关的文章都算是及格了。对算法原理的描述,我还是比较满意的,特别是收到小伙伴们的暖心评论和留言时,都会备受鼓舞。在代码实现方面,并没有达到预期,开始阶段一些简单的算法还能用Python和Java分别实现,到了中后期算法复杂度提升后就有些力不从心了。在认清现实后,我去掉了使用Java实现算法过程的目标。针对特别复杂的算法,甚至都不要求自己手写了。

看,我就是这么容易和自己和解。

文章汇总

本节汇总了近一年运筹学基础算法的相关文章和链接,并按照此前的目标设计进行了分类。

分类文章和链接
非线性规划-黄金分割法Python和Java代码实现:黄金分割法求解一维最优化问题
非线性规划-切线法Python和Java代码实现:切线法求解一维最优化问题
非线性规划-坐标轮转法Python代码实现:坐标轮换法求解多维最优化问题
非线性规划-梯度类算法梯度类算法原理:最速下降法、牛顿法和拟牛顿法
拟牛顿法:python代码实现
非线性规划-间接法求解包含约束的最优化问题:拉格朗日乘子法和KKT条件
非线规划-直接法求解包含约束的最优化问题:罚函数法
线性规划-单纯形法线性规划和单纯形法-原理篇
线性规划模型-工程应用篇
线性规划-整数规划求解整数规划问题的割平面法和分支定界法
稍微憋个招,聊聊为什么不能止步于会调求解器
线性规划-对偶问题线性规划对偶问题:理论推导和实际应用
智能优化-DE差分进化算法,依旧强势
智能优化-ACO蚁群算法求包含34个国内城市的TSP,和最优解相差没那么大
智能优化-ALNS着实不错的自适应大邻域搜索算法ALNS

经验总结

关于这一年来对于运筹算法的学习和感悟,总结如下:

首先,这些算法在运筹学中算是基础内容。通过对这些知识点的学习和总结,我自身受益匪浅,在一定程度上弥补了我因为非科班出身导致基础知识储备的欠缺。不过这只是一个开始,随着认知的提升,可能会发现未知的内容也越来越多,后续还有很多内容需要去慢慢探索。

其次,在学习上我是偏应用导向的。当初选择运筹学作为自己未来长期从事的行业,主要是觉得把这些算法策略应用到实际场景中能带来极大的成就感,所以我不太会执着于理论上的推导,在学习知识时,会优先选择工业实践中最常用的运筹算法,并辅以部分基础的算法原理,以知其然并知其所以然。

最后,这些知识点的串联方式是基于我目前的认知。图中的分类仅依赖于我当前体系化学习的实践路径,算不上权威,可以作为大家构建自己知识体系的参考。

一则预告

明年运筹优化领域的文章主题,偷偷预告一下,大概率是随机优化和鲁棒优化,即,模型输入存在不确定性情况下的最优决策。

具体的学习路径,我还没思考清楚——当然了,即使已经想清楚了,我也不会直接公开出来,大概率会类似于这样,等明年年底总结吧!

最后的最后,愿大家都能持之以恒地做一件件小事,慢慢努力,惊艳众人。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/234560.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

CESM笔记——component活动状态+compset前缀解析+B1850,BHIST区别

时隔一年没写CSDN笔记了,一些CESM的知识点我都快忘了。诶,主要是在国外办公室的网屏蔽了好多国内的网络,CSDN登不上,回家又不想干活。。。好吧,好多借口。。。 昨天师弟问我一些问题,想想要不可以水一篇小…

MySQL进阶学习--day01

存储引擎介绍 1. MySQL体系结构2. 存储引擎介绍2.1 存储引擎操作2.2 示例演示 1. MySQL体系结构 连接层(Connection Layer):连接层主要负责与客户端建立连接,并进行用户身份验证和权限验证。在这一层,MySQL 接收来自客…

postgresql安装部署(docker版本)

1.在线部署 创建数据库存储目录 mkdir /home/pgdata创建容器 docker run --name postgresql --restartalways -d -p 5432:5432 -v /home/pgdata:/var/lib/postgresql/data --shm-size10g -e POSTGRES_PASSWORD密码 postgis/postgis:12-3.2-alpine–name为设置容器名称 -d表…

网页设计中增强现实的兴起

目录 了解增强现实 增强现实的历史背景 AR 和网页设计的交叉点 AR 在网页设计中的优势 增强参与度和互动性 个性化的用户体验 竞争优势和品牌差异化 AR 在网页设计中的用例 结论 近年来,增强现实已成为一股变革力量,重塑了我们与数字领域互动的方式。它被…

每天五分钟计算机视觉:使用1*1卷积层来改变输入层的通道数量

本文重点 在卷积神经网络中有很多重要的卷积核,比如1*1的卷积核,3*3的卷积核,本文将讲解1*1的卷积核的使用,它在卷积神经网络中具有重要的地位。由于1*1的卷积核使用了最小的窗口,那么1*1的卷积核就失去了卷积层可以识…

QEMU环境调试方法

目录 1.如何查看makefile构建过程执行的命令? 2.如何使用GCC生成C程序的宏展开文件? 3.如何在qemu中执行特定的可执行程序? 4.如何在qemu中直接运行可执行程序? 5.如何在qemu中调试某个可执行程序? 本文从调试的角…

Linux的权限

Linux的权限 一、shell运行原理--外壳程序二、Linux权限(主体,重点)三、常见的权限问题目录权限umask粘滞位 一、shell运行原理–外壳程序 为什么我们不是直接访问的操作系统? 1.人不善于直接使用操作系统 2.如果让人直接访问操作…

阵列信号处理-波束方向图参数

波束方向图的参数有: 3dB带宽(半功率波束宽度,HPBW,half-power beamwidth)到第一零点距离(这个距离的两倍称为 B W N N BW_{NN} BWNN​)到第一旁瓣的距离第一旁瓣的高度其余零点的位置旁瓣的衰减速率栅瓣 波束方向图的主波束 3dB波束宽度 3…

reinforce 跑 CartPole-v1

gym版本是0.26.1 CartPole-v1的详细信息,点链接里看就行了。 修改了下动手深度强化学习对应的代码。 然后这里 J ( θ ) J(\theta) J(θ)梯度上升更新的公式是用的不严谨的,这个和王树森书里讲的严谨公式有点区别。 代码 import gym import torch from …

React基础语法整理

安装: yarn create react-app reatc-lesson --template typescript yarn create 创建一个react-app的应用 项目名称 typescript 的模板react-app 官方地址 https://create-react-app.bootcss.com/docs/adding-typescriptreact 语法文档 https://zh-hans.react.dev…

12.9文档记录——脱欧建模

4 脱欧对英国整体的影响 4.1 脱欧影响评估模型 4.1.1 指标的确定和数据的收集 为了建立指标体系,我们需要选择有代表性的指标。在有关脱欧的大量研究基础上[1],考虑到脱欧对英国经济、民生、国际影响等各个方面影响,我们最终在兼顾模型有效…

表格的介绍与实战(详细且有案例)

目录​​​​​​​​​​​​​​ 表格的主要作用: 表格的基本语法: 表格相关的标签 合并单元格: 实战: 表格的主要作用: 表格主要是用来展示数据的,使用表格来展示数据,数据可读性更好…

大数据HCIE成神之路之数据预处理(1)——缺失值处理

缺失值处理 1.1 删除1.1.1 实验任务1.1.1.1 实验背景1.1.1.2 实验目标1.1.1.3 实验数据解析 1.1.2 实验思路1.1.3 实验操作步骤1.1.4 结果验证 1.2 填充1.2.1 实验任务1.2.1.1 实验背景1.2.1.2 实验目标1.2.1.3 实验数据解析 1.2.2 实验思路1.2.3 实验操作步骤1.2.4 结果验证 1…

基于Solr的全文检索系统的实现与应用

文章目录 一、概念1、什么是Solr2、与Lucene的比较区别1)Lucene2)Solr 二、Solr的安装与配置1、Solr的下载2、Solr的文件夹结构3、运行环境4、Solr整合tomcat1)Solr Home与SolrCore2)整合步骤 5、Solr管理后台1)Dashbo…

关于图像清晰度、通透度的描述

1、问题背景 在图像评测过程中,从主观上一般怎么去评判一副图像的优劣呢? 比较显而易见的就是图像的清晰度和通透度,他们决定了评判者对画质的第一印象。 那怎么去理解图像的清晰度和通透度呢?这是本文要描述的内容。 2、问题分…

YOLOV3 SPP 目标检测项目(针对xml或者yolo标注的自定义数据集)

1. 目标检测的两种标注形式 项目下载地址:YOLOV3 SPP网络对自定义数据集的目标检测(标注方式包括xml或者yolo格式) 目标检测边界框的表现形式有两种: YOLO(txt) : 第一个为类别,后面四个为边界框,x,y中心点坐标以及h,w的相对值 xml文件:类似于网页的标注文件,里面会…

Element-ui框架完成vue2项目的vuex的增删改查

看效果图是否是你需要的 这是原来没有Element-ui框架的 首先,你要在你的项目里安装Element-ui yarn命令 yarn add element-uinpm命令 npm install element-ui --save好了现在可以粘贴代码 //main.js import Vue from vue import Vuex from vuex import VueRouter …

跟着chatgpt一起学|2.Clickhouse入门(2)

跟着chatgpt一起学|2.clickhouse入门(1)-CSDN博客 chatgpt规划的学习路径如下: 目录 2.数据建模和表设计 2.1 数据模型和表设计原则 2.1.1 什么是LowCardinality类型? 2.1.2 什么是数据分片? 2.2 ClickHouse支持…

初学者如何入门 Generative AI 之 Stable Diffusion 与 CLIP :看两篇综述,玩几个应用感受一下先!超多高清大图,沉浸式体验

文章大纲 4种 图片生成 的算法扩散模型的起源Stable DiffusionCLIP参考文献与学习路径A synthography of an astronaut riding a horse created in NightCafe Studio with Stable Diffusion XL (SDXL). Prompt is a photograph of an astronaut riding a horse with weight of …

数据结构与算法-Rust 版读书笔记-1语言入门

数据结构与算法-Rust 版笔记 一、语言入门 1、关键字、注释、命名风格 目前(可能还会增加)39个,注意,Self和self是两个关键字。 Self enum match super as extern mod trait async false …