dlib是什么?

dlib C++ Libraryicon-default.png?t=N7T8http://dlib.net/

dlib是什么?

Dlib is a modern C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real world problems. It is used in both industry and academia in a wide range of domains including robotics, embedded devices, mobile phones, and large high performance computing environments. Dlib's open source licensing allows you to use it in any application, free of charge.

Dlib是一个现代C++工具包,包含机器学习算法和工具,用于在C++中创建复杂的软件来解决现实世界中的问题。它在工业和学术界广泛应用,包括机器人、嵌入式设备、移动电话和大型高性能计算环境。Dlib的开源许可允许您在任何应用程序中免费使用它。

Major Features(主要特征)

  • Documentation(文档)
    • Unlike a lot of open source projects, this one provides complete and precise documentation for every class and function. There are also debugging modes that check the documented preconditions for functions. When this is enabled it will catch the vast majority of bugs caused by calling functions incorrectly or using objects in an incorrect manner.
    • Lots of example programs are provided
    • I consider the documentation to be the most important part of the library. So if you find anything that isn't documented, isn't clear, or has out of date documentation, tell me and I will fix it.
  • High Quality Portable Code(高质量可移植代码)
    • Good unit test coverage. The ratio of unit test lines of code to library lines of code is about 1 to 4.
    • The library is tested regularly on MS Windows, Linux, and Mac OS X systems. However, it should work on any POSIX system and has been used on Solaris, HPUX, and the BSDs.
    • No other packages are required to use the library. Only APIs that are provided by an out of the box OS are needed.
    • There is no installation or configure step needed before you can use the library. See the How to compile page for details.
    • All operating system specific code is isolated inside the OS abstraction layers which are kept as small as possible. The rest of the library is either layered on top of the OS abstraction layers or is pure ISO standard C++.
  • Machine Learning Algorithms(机器学习算法)
    • Deep Learning
    • Conventional SMO based Support Vector Machines for classification and regression
    • Reduced-rank methods for large-scale classification and regression
    • Relevance vector machines for classification and regression
    • General purpose multiclass classification tools
    • A Multiclass SVM
    • A tool for solving the optimization problem associated with structural support vector machines.
    • Structural SVM tools for sequence labeling
    • Structural SVM tools for solving assignment problems
    • Structural SVM tools for object detection in images as well as more powerful (but slower) deep learning tools for object detection.
    • Structural SVM tools for labeling nodes in graphs
    • A large-scale SVM-Rank implementation
    • An online kernel RLS regression algorithm
    • An online SVM classification algorithm
    • Semidefinite Metric Learning
    • An online kernelized centroid estimator/novelty detector and offline support vector one-class classification
    • Clustering algorithms: linear or kernel k-means, Chinese Whispers, and Newman clustering.
    • Radial Basis Function Networks
    • Multi layer perceptrons
  • Numerical Algorithms(数值算法)
    • A fast matrix object implemented using the expression templates technique and capable of using BLAS and LAPACK libraries when available.
    • Numerous linear algebra and mathematical operations are defined for the matrix object such as the singular value decomposition, transpose, trig functions, etc.
    • General purpose unconstrained non-linear optimization algorithms using the conjugate gradient, BFGS, and L-BFGS techniques
    • Levenberg-Marquardt for solving non-linear least squares problems
    • Box-constrained derivative-free optimization via the BOBYQA algorithm
    • An implementation of the Optimized Cutting Plane Algorithm
    • Several quadratic program solvers
    • Combinatorial optimization tools for solving optimal assignment and min cut/max flow problems as well as the CKY algorithm for finding the most probable parse tree
    • A big integer object
    • A random number object
  • Graphical Model Inference Algorithms(图形模型推理算法)
    • Join tree algorithm for exact inference in a Bayesian network.
    • Gibbs sampler markov chain monte carlo algorithm for approximate inference in a Bayesian network.
    • Routines for performing MAP inference in chain-structured, Potts, or general factor graphs.
  • Image Processing(图像处理)
    • Routines for reading and writing common image formats.
    • Automatic color space conversion between various pixel types
    • Common image operations such as edge finding and morphological operations
    • Implementations of the SURF, HOG, and FHOG feature extraction algorithms.
    • Tools for detecting objects in images including frontal face detection and object pose estimation.
    • High quality face recognition
  • Threading(线程)
    • The library provides a portable and simple threading API
    • A message passing pipe for inter-thread and inter-process communication
    • A timer object capable of generating events that are regularly spaced in time
    • Threaded objects
    • Threaded functions
    • Parallel for loops
    • A thread_pool with support for futures
  • Networking(网络)
    • The library provides a portable and simple TCP sockets API
    • An object to help you make TCP based servers
    • iostream and streambuf objects that enables TCP sockets to interoperate with the C++ iostreams library
    • A simple HTTP server object you can use to embed a web server into your applications
    • A message passing pipe for inter-thread and inter-process communication
    • A tool used to implement algorithms using the Bulk Synchronous Parallel (BSP) computing model
  • Graphical User Interfaces(GUI接口)
    • The library provides a portable and simple core GUI API
    • Implemented on top of the core GUI API are numerous widgets
    • Unlike many other GUI toolkits, the entire dlib GUI toolkit is threadsafe
  • Data Compression and Integrity Algorithms(数据压缩和完整性算法)
    • A CRC 32 object
    • MD5 functions
    • Various abstracted objects representing parts of data compression algorithms. Many forms of the PPM algorithm are included.
  • Testing(测试)
    • A thread safe logger object styled after the popular Java logger log4j
    • A modular unit testing framework
    • Various assert macros useful for testing preconditions
  • General Utilities(通用应用程序)
    • A type-safe object to convert between big and little endian byte orderings
    • A command line parser with the ability to parse and validate command lines with various types of arguments and options
    • An XML parser
    • An object that can perform base64 conversions
    • Many container classes
    • Serialization support
    • Many memory manager objects that implement different memory pooling strategies
    • A tool that lets you easily call C++ from MATLAB

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/234356.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

面试官:性能测试瓶颈调优你是真的会吗?

引言:性能瓶颈调优 在实际的性能测试中,会遇到各种各样的问题,比如 TPS 压不上去等,导致这种现象的原因有很多,测试人员应配合开发人员进行分析,尽快找出瓶颈所在。 理想的性能测试指标结果可能不是很高&…

小目标检测模型设计的一点思考

1. 小目标的特性 目标之间的交叠概率比较低,即使有交叠,其IoU多数情况下也是比较小的 AI-TOD Tiny Person Dateset 小目标自身的纹理显著度有强弱区别,但是总体来说纹理特征都较弱,很多时候需要借助一定的图像上下文来帮助确认 …

SpringBoot 官方脚手架不再支持Java8和Java11

Spring 官方脚手架不再支持初始化 Java8 和 Java 11 项目,目前仅支持初始化Java17 和 Java21 项目。 阿里巴巴Spring脚手架支持初始化Java8、Java11、Java17、Java19 的项目,不支持初始化Java21的项目。

一文搞懂Lombok Plugins使用与原理

目录 一文搞懂Lombok使用与原理 1.前言2.什么是Lombok3. IntelliJ安装Lombok3.1通过IntelliJ的插件中心安装3.2在项目中使用Lombok Plugins 4.Lombok 注解大全说明4.1POJO类常用注解4.2其他注解 5.Lombok常见问题6.总结7.参考 文章所属专区 超链接 1.前言 2.什么是Lombok Lo…

WPS宏批量修改图片尺寸

致谢 感谢网络各位大佬的分享,可以让我快速的学习这块内容。 JS宏代码

上班必备——项目部署环境

大家都知道,互联网行业有很多的岗位,前端,后端,产品,测试,ui等。 ui,产品和测试的同事在前端开发的过程中,都会时刻关注着进度,是要看页面效果的,这个时候怎…

MIT线性代数笔记-第28讲-正定矩阵,最小值

目录 28.正定矩阵,最小值打赏 28.正定矩阵,最小值 首先正定矩阵是一个实对称矩阵 由第 26 26 26讲的末尾可知正定矩阵有以下四种判定条件: 所有特征值都为正左上角所有 k k k阶子矩阵行列式都为正( 1 ≤ k ≤ n 1 \le k \le n …

SpringBoot默认使用CGLIB的原因

程序员的公众号:源1024,获取更多资料,无加密无套路! 最近整理了一份大厂面试资料《史上最全大厂面试题》,Springboot、微服务、算法、数据结构、Zookeeper、Mybatis、Dubbo、linux、Kafka、Elasticsearch、数据库等等 …

基于ssm农产品仓库管理系统系统论文

摘 要 现代经济快节奏发展以及不断完善升级的信息化技术,让传统数据信息的管理升级为软件存储,归纳,集中处理数据信息的管理方式。本农产品仓库管理系统就是在这样的大环境下诞生,其可以帮助管理者在短时间内处理完毕庞大的数据信…

springboot084基于springboot的论坛网站

springboot084基于springboot的论坛网站 源码获取: https://docs.qq.com/doc/DUXdsVlhIdVlsemdX

回味童年经典游戏的项目

目录 1.超级玛丽2.坦克大战3.吃豆人游戏4.贪吃蛇游戏 1.超级玛丽 项目地址:超级马里奥游戏源码 在线试玩网址在资源描述中 在线试玩:http://martindrapeau.github.io/backbone-game-engine/super-mario-bros/index.html 主要语言:JavaScript…

列表标签的介绍与使用

列表的作用&#xff1a; 整齐、整洁、有序&#xff0c;它作为布局会更加自由和方便。 根据使用情景不同&#xff0c;列表可以分为三大类&#xff1a;无序列表、有序列表和自定义列表 无序列表 <ul> 标签表示 HTML 页面中项目的无序列表&#xff0c;一般会以项目符号呈…

C++设计模式——Adapter(适配器)模式

一、Adapter模式是个啥&#xff1f; 适配器模式在软件开发的江湖里&#xff0c;可以说用途是非常广的。下面几个经典的场景来说明适配器模式的使用。 场景一 场景二 假如你正在开发一款股票市场监测程序&#xff0c; 它会从不同来源下载 XML 格式的股票数据&#xff0c; 然后…

力扣每日一题day33[111. 二叉树的最小深度]

给定一个二叉树&#xff0c;找出其最小深度。 最小深度是从根节点到最近叶子节点的最短路径上的节点数量。 说明&#xff1a;叶子节点是指没有子节点的节点。 示例 1&#xff1a; 输入&#xff1a;root [3,9,20,null,null,15,7] 输出&#xff1a;2示例 2&#xff1a; 输入…

传感器(一) :IMU / 陀螺仪模块

IMU / 陀螺仪模块 一、概述二、注意参数2.1 陀螺仪芯片标准&#xff08;MPU6050)2.2 参数说明 三、IMU模式使用注意事项3.1 IMU模块安装注意事项3.2 为什么IMU要安装在机器中心位置 四、常见陀螺仪芯片品牌 一、概述 IMU全称为惯性测量单元&#xff0c;可以通过测量物体在三维空…

SpringSecurity6 | 登陆后的跳转

SpringSecurity6 | 自定义认证规则 ✅作者简介&#xff1a;大家好&#xff0c;我是Leo&#xff0c;热爱Java后端开发者&#xff0c;一个想要与大家共同进步的男人&#x1f609;&#x1f609; &#x1f34e;个人主页&#xff1a;Leo的博客 &#x1f49e;当前专栏&#xff1a; Ja…

HTML5+CSS3小实例:3D翻转Tab选项卡切换特效

实例:3D翻转Tab选项卡切换特效 技术栈:HTML+CSS 效果: 源码: 【HTML】 <!DOCTYPE html> <html><head><meta http-equiv="content-type" content="text/html; charset=utf-8"><meta name="viewport" content=…

JavaScript基础知识整理(最全知识点, 精简版,0基础版)

文章目录 一、输入和输出内容 1.1 输出 1.1.1 在浏览器的控制台输出打印 1.1.2 直接在浏览器的页面上输出内容 1.1.3 页面弹出警告对话框 1.2 输入 二、变量 2.1 变量是什么 2.2 变量的声明和赋值 2.3 变量的命名规范和规范 三、变量扩展&#xff08;数组&#xff09; 3.1 数组…

MyBatis 四大核心组件之 ParameterHandler 源码解析

&#x1f680; 作者主页&#xff1a; 有来技术 &#x1f525; 开源项目&#xff1a; youlai-mall &#x1f343; vue3-element-admin &#x1f343; youlai-boot &#x1f33a; 仓库主页&#xff1a; Gitee &#x1f4ab; Github &#x1f4ab; GitCode &#x1f496; 欢迎点赞…

【S32K3环境搭建】-0.4-使用SEGGER J-Link烧录调试程序

【S32K3_MCAL从入门到精通】合集&#xff1a; S32K3_MCAL从入门到精通https://blog.csdn.net/qfmzhu/category_12519033.html 导入一个编译没有报错的S32K312工程。接着在菜单栏中&#xff0c;依次选择Debug下拉箭头 -- > Debug Configuration&#xff1b; 在弹出的Create…