智能优化算法应用:基于蜻蜓算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于蜻蜓算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于蜻蜓算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.蜻蜓算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用蜻蜓算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 ,   d ( n , p ) ≤ R n 0 ,   e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f   d ( n o d e i , p ) ≤ r 0 ,   e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.蜻蜓算法

蜻蜓算法原理请参考:https://blog.csdn.net/u011835903/article/details/107783363
蜻蜓算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径


蜻蜓算法参数如下:

%% 设定蜻蜓优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明蜻蜓算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/233655.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

计算机毕业设计 SpringBoot的二手物品交易平台 二手商城系统 Javaweb项目 Java实战项目 前后端分离 文档报告 代码讲解 安装调试

🍊作者:计算机编程-吉哥 🍊简介:专业从事JavaWeb程序开发,微信小程序开发,定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事,生活就是快乐的。 🍊心愿:点…

C++初阶-vector的介绍及使用

vector的介绍及使用 一、vector的介绍1.1 vector的概念 二、vector的使用2.1 vector的定义2.2 vector iterator的使用2.3 vector空间增长问题2.4 vector的增删改查2.5 vector的整体代码实现2.5.1 vector的常用内置函数使用2.5.2 vector的访问方式及测试函数 三、vector迭代器失…

windows系统安装RocketMQ_dashboard

1.下载源码 按照官网说明下载源码 官网 官网文档 2.源码安装 2.1.① 编译rocketmq-dashboard 注释掉报错的maven插件frontend-maven-plugin、maven-antrun-plugin mvn clean package -Dmaven.test.skiptrue2.2.② 运行rocketmq-dashboard java -jar target/rocketmq-…

API测试基础之http协议

http简介: http(超文本传输协议)是一个简单的请求-响应协议,它通常运行在TCP(传输控制协议)之上。它指定了客户端可能发送给服务器什么样的消息以及得到什么样的响应。请求和响应消息的头以ASCII码形式给出…

分布式分布式事务分布式锁分布式ID

目录 分布式分布式系统设计理念目标设计思路中心化去中心化 基本概念分布式与集群NginxRPC消息中间件(MQ)NoSQL(非关系型数据库) 分布式事务1 事务2 本地事务3 分布式事务4 本地事务VS分布式事务5 分布式事务场景6 CAP原理7 CAP组…

论文阅读[2023ICME]Edge-FVV: Free Viewpoint Video Streaming by Learning at the Edge

Edge-FVV: Free Viewpoint Video Streaming by Learning at the Edge 会议信息: Published in: 2023 IEEE International Conference on Multimedia and Expo (ICME) 作者: 1 背景 FVV允许观众从多个角度观看视频,但是如果所选视点的视频…

12. MySQL 锁机制

目录 概述 MylSAM引擎 InnoDB引擎 概述 锁是计算机协调多个进程或线程并发访问某一资源的机制(避免争抢)。在数据库中,除传统的计算资源(如CPU、RAM、I/O等)的争用以外,数据也是一种供许多用户共享的资如何保证数据…

Edge 中的msedgewebview2总想联网

目录预览 一、问题描述二、原因分析三、解决方案四、参考链接 一、问题描述 使用Edge浏览器的时候,右下角火绒总会弹出“msedgewebview2”想要联网的弹窗,如下 点击发起程序,找到路径如下: C:\Program Files (x86)\Microsoft\…

LangChain 24 对本地文档的搜索RAG检索增强生成Retrieval-augmented generation

LangChain系列文章 LangChain 实现给动物取名字,LangChain 2模块化prompt template并用streamlit生成网站 实现给动物取名字LangChain 3使用Agent访问Wikipedia和llm-math计算狗的平均年龄LangChain 4用向量数据库Faiss存储,读取YouTube的视频文本搜索I…

【网络安全】vulhub靶场搭建与一个漏洞的简单示例

vulhub是一个经典的靶场,里面大约包含了200个不同的漏洞,可以说是安全从业者必刷。 无需docker知识,简单执行一条命令即可编译、运行一个完整的漏洞靶场镜像。 我的环境是CentOS 7。 先安装docker sudo curl -L "https://github.com…

【漏洞复现】华脉智联指挥调度平台/script_edit/fileread.php文件读取漏洞

Nx01 产品简介 深圳市华脉智联科技有限公司,融合通信系统将公网集群系统、专网宽带集群系统、不同制式、不同频段的短波/超短波对讲、模拟/数字集群系统、办公电话系统、广播系统、集群单兵视频、视频监控系统、视频会议系统等融为一体,集成了专业的有线…

二叉树算法专栏一《理论基础》

下面我会介绍一些我在刷题过程中经常用到的二叉树的一些基础知识,所以我不会教科书式地将二叉树的基础内容通通讲一遍。 二叉树的种类 在我们解题过程中二叉树有两种主要的形式:满二叉树和完全二叉树。 满二叉树 满二叉树是一种特殊的二叉树&#xf…

【头歌系统数据库实验】实验5 SQL的多表查询-1

目录 第1关:等值连接:求S表和J表城市相同的等值连接(列顺序还是按照S、J表) 第2关:查询供应情况,并显示供应商、零件和工程三者的名称 第3关:找出上海厂商供应的所有零件号码 第4关:找出使用上海产的零…

VSCode Keil Assintant 联合开发STM32

文章目录 VSCodeKeil AssistantUV5🥇软件下载🥇配置环境🥇插件安装🥈C/C Extension Pack🥉C/C Extension Pack介绍🥉插件安装 🥈Keil Assistant🥉Keil Assistant介绍🥉插…

CSS-自适应导航栏(flex | grid)

目标:实现左右各有按钮,中间是内容,自适应显示中间的内容导航栏,即 根据中间的宽度大小显示内容。 自适应导航栏 总结:推荐 flex布局 / grid布局 flex布局: 两侧 flex:1; ----->中间自适应 grid布局&…

Docker容器的可视化管理工具—DockerUI本地部署与远程访问

文章目录 前言1. 安装部署DockerUI2. 安装cpolar内网穿透3. 配置DockerUI公网访问地址4. 公网远程访问DockerUI5. 固定DockerUI公网地址 前言 DockerUI是一个docker容器镜像的可视化图形化管理工具。DockerUI可以用来轻松构建、管理和维护docker环境。它是完全开源且免费的。基…

基于单片机智能病床呼叫系统设计

**单片机设计介绍,基于单片机智能病床呼叫系统设计 文章目录 一 概要二、功能设计设计思路 三、 软件设计原理图 五、 程序六、 文章目录 一 概要 基于单片机的智能病床呼叫系统是一种利用单片机技术设计的医疗设备,它能够帮助病人在住院期间快速、方便…

flask之jinjia模板语法,拉取omdb api

模板主要的语法就是继承母版,集成模块。 继承母版的语法是: {% extends "common/home.html" %} 母版里集成模块的语法是: {% block head %}{% include ./common/header.html %}{% endblock %} 拉取电影资源,网址是&a…

T5论文个人记录

参考&转载自: 介绍Google推出的大一统模型—T5_谷歌大模型_深度之眼的博客-CSDN博客 T5 和 mT5-CSDN博客 T5:Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer(万字长文略解T5)_t5论文…

【原创创新点】金属工件缺陷检测系统:Efficient Multi-Scale-Conv的改进YOLOv8

1.研究背景与意义 项目参考AAAI Association for the Advancement of Artificial Intelligence 研究背景与意义:金属工件是现代工业生产中不可或缺的重要组成部分。金属工件的质量和性能直接影响到产品的品质和效率,因此对金属工件的研究和改进具有重要…