99、NeRF ray space

CG相机模型

在图形学中最常用的相机模型的原理和小孔成像是类似的。
在这里插入图片描述
不同之处在于,如上图,小孔成像得到的图像是倒立的,但是我们希望得到的图像是正向的,因此,我们选择小孔前成像。
在这里插入图片描述
从 3D 到 2D 的投影,就是根据 3D 物体的坐标,计算其投影到 2D 成像平面上的坐标。对于一个已有的相机而言,只有在恰当位置范围内的 3D 物体才可能投影到成像平面上。这个恰当范围,跟成像平面的大小,以及相机中心到平面距离等因素有关。

在图形学中有一个专门的模型来定义这个范围:
在这里插入图片描述
上图这个形似棱锥的模型,就是相机的可视范围。其中,有两个重要的概念:Near clipping planeFar clipping plane

Near clipping plane 是相机前方的平面,也就是成像平面,Far clipping plane 是更远处的平面,限制了相机最远可视的范围,它们都与相机的 z 轴垂直。在这两个平面之间的空间,就是相机的可视范围。在这个范围内的物体,才能投影到相机的成像平面上。在图形学中,这个可视范围被称为视锥体 (Viewing Frustum)。

在真实的相机中,Far clipping plane 一般是无限远的,但在图形学中,为了简化计算,一般将其设置为有限的距离。
在这里插入图片描述

3D坐标到2D坐标

在这里插入图片描述
上图是一个典型的物体投影到屏幕上的过程。我们假设已经获得了物体在世界坐标系中的坐标,在世界坐标系转换到图像坐标系的过程中,涉及以下过程。

世界坐标系转换到相机坐标系

对三维物体投影的第一步,是将三维物体从世界坐标系转换到以相机为中心的坐标系统,这样方便后续的投影计算。

相机坐标系是以相机为中心的坐标系 (也叫 eye coordinates),由于相机和世界坐标系的原点可能不同,且其坐标轴方向和世界坐标系可能不同,因此世界坐标系和相机坐标系的转换一般涉及旋转平移两项操作。

在图形学中,通常使用齐次坐标,并配合 4x4 的矩阵来完成两个坐标系统的转换。

相机坐标系到屏幕坐标系

获得物体的相机坐标系(Near clipping planeFar clipping plane 之间)后,接下来就可以计算物体投影到成像平面上的坐标。

这个过程可以根据相似三角形的原理计算得出。
在这里插入图片描述

如上图所示,假设相机的中心在 A 点,三维物体在 C 点,其在成像平面上的投影为 C’。

由于我们已经获得了物体在相机坐标系中的坐标,因此可以计算出 AB、BC 的长度。而 AB’、B’C’ 的长度,可以根据相似三角形的原理计算出来 (上图假设相机焦距是 1,但实际情况中不做限制,我们用 Z n e a r Z_{near} Znear表示):

B C A B = B ′ C ′ A B ′ \frac{BC}{AB} = \frac{B'C'}{AB'} ABBC=ABBC

P . y ∣ P . z ∣ = P ′ . y Z n e a r P ′ . y = Z n e a r ∗ P . y ∣ P . z ∣ \frac{P.y}{|P.z|} = \frac{P'.y}{Z_{near}} \\ P'.y = \frac{Z_{near}*P.y}{|P.z|} P.zP.y=ZnearP.yP.y=P.zZnearP.y

同样的,可以算出 : P ′ . x = Z n e a r ∗ P . x ∣ P . z ∣ P'.x = \frac{Z_{near}*P.x}{|P.z|} P.x=P.zZnearP.x

对于 z 轴坐标来说,由于 Near clipping plane 和 z 轴是垂直的,因此所有投影到成像平面上的点,z 坐标都是相同的。而事实上在投影到 2D 坐标后,z 轴坐标已经没有意义了,因此可以直接忽略。

P ′ . x P'.x P.x P ′ . y P'.y P.y 可以发现,投影到成像平面上的坐标,其 x 和 y 坐标都是除以 z 坐标得到的。因此这种投影变换也被称为 z divide 或者 perspective divide。这也是透视投影的特点,投影到成像平面上的坐标,其 x 和 y 坐标都是 与 z 坐标绝对值成反比的。也因此,物体越远,其在屏幕上的大小越小。

屏幕坐标系到图像坐标系

转换到屏幕坐标系后,我们理论上已经获得了物体的 2D 坐标,但这个坐标并不是最终图像上的坐标。

在第 2 步相机坐标系到屏幕坐标系的转换中,不难发现,屏幕坐标系的原点是在屏幕中心的,但在图像坐标系中,原点一般是在左上角或者左下角。因此,要转换到图像坐标系,还需要一步归一化的过程。

在不同的系统中,图像坐标系的原点是存在差异的。比如,有些系统中的图像原点位于左下角,y 轴朝上,但有些则反着来。而 NDC 坐标系是一个跟设备无关的坐标系统,它将图像的 x/y/z 轴都统一归一化到 [0, 1],并规定了坐标轴方向 (在有些图形系统中,也会将 x/y/z 轴归一化到 [-1, 1]),如下图所示 (中间即是 NDC 坐标系)。

NDC 全称是 Normalized Device Coordinate,也即归一化的设备坐标系。这是从屏幕坐标系转换到图像坐标系的中间媒介。
在这里插入图片描述
用上图的例子来演示 屏幕坐标系 -> NDC 坐标系 -> 图像坐标系 (即上图的 raster 坐标系) 的转换过程。

假设 投影屏幕 长宽分别为 height、width,NDC 的原点在左下角,y 轴朝上,那么,屏幕坐标系到 NDC 坐标系的转换公式为:

P b d c . x = P ′ . x + w i d t h / 2 w i d t h P b d c . y = P ′ . y + h e i g h t / 2 h e i g h t P_{bdc}.x = \frac{P'.x+width/2}{width} \\ P_{bdc}.y = \frac{P'.y+height/2}{height} Pbdc.x=widthP.x+width/2Pbdc.y=heightP.y+height/2

假设图像大小为 image_height、image_width,图像原点位于左上角,y 轴朝下。那么,NDC 坐标系图像坐标系的转换公式为:

P i m a g e . x = P n d c . x ∗ i m a g e _ w i d t h P i m a g e . y = ( 1 − P n d c . y ) ∗ i m a g e _ h e i g h t P_{image}.x = P_{ndc}.x * image\_width \\ P_{image}.y = (1-P_{ndc}.y) * image\_height Pimage.x=Pndc.ximage_widthPimage.y=(1Pndc.y)image_height

NDC 坐标系是连续的坐标系,只有转换到图像坐标系,才会对坐标进行取整操作。此外,NDC 坐标系仍是三维坐标系,不过在考虑投影的时候,z 轴通常会被忽略

OpenGL 中,NDC 坐标到 raster 图像坐标的转换过程,也被称为 viewport transform

采用 NDC 坐标的好处是,我们可以将 NDC 看作是一个通用的坐标系统,并将不同系统的坐标统一起来。比如,我们在将屏幕坐标系转换到图像坐标系时,可以先换算到统一的 NDC 坐标系中,再实现二者的相互转化。在 NDC 坐标系中进行处理的时候,就不需要关心投影屏幕长宽、图像大小等信息了。

投影矩阵(Projection Matrix)

从上面三维坐标到二维坐标的转换过程中,不难发现,整个过程涉及步骤很多,非常繁琐。为了简化计算,在很多图形系统中,会将物体从相机坐标系到 NDC 坐标系的过程,用一个矩阵串联起来 (即投影矩阵)。

即完成所有操作总共需要两个矩阵:世界坐标系和相机坐标系之间的变换矩阵、投影矩阵。

理解投影矩阵,对后面 NeRF 中 NDC 坐标系统的推导至关重要。因此,这里先详细介绍投影矩阵的由来,并补充一些相关的数学知识。

不同坐标系统的转换

三维坐标转二维坐标的第一步,就是将物体从世界坐标系转换到相机坐标系。

这一步在投影矩阵的求解中是不需要的。不过,由于图形学中,不同坐标系之间的转换是一个基本操作。

任何三维坐标系统,都可以用三个互相垂直的坐标轴以及坐标原点来唯一确定。

这三个坐标轴,在线性代数中,也被称为基向量v={ v 1 , v 2 , v 3 v_1,v_2,v_3 v1,v2,v3} 。通常情况下,我们会用标准向量 e 1 = [ 1 , 0 , 0 ] e_1=[1,0,0] e1=[1,0,0] e 1 = [ 0 , 1 , 0 ] e_1=[0,1,0] e1=[0,1,0] e 1 = [ 0 , 0 , 1 ] e_1=[0,0,1] e1=[0,0,1] 来表示这三个坐标轴。不过事实上也可以随意定义,只要它们线性无关,可以表达出整个三维空间即可。

现在,假设有两个不同的坐标系统 A 和 B。A 的基向量 v = { v 1 , v 2 , v 3 } v=\{v_1,v_2,v_3\} v={v1,v2,v3},B 的基向量 u = { u 1 , u 2 , u 3 } u=\{u_1,u_2,u_3\} u={u1,u2,u3} 。根据线性无关,可以得出:

u 1 = γ 11 v 1 + γ 12 + γ 13 v 3 u 2 = γ 21 v 1 + γ 22 + γ 23 v 3 u 3 = γ 31 v 1 + γ 32 + γ 33 v 3 u_1 = \gamma_{11}v_1+\gamma_{12}+\gamma_{13}v_3 \\ u_2 = \gamma_{21}v_1+\gamma_{22}+\gamma_{23}v_3 \\ u_3 = \gamma_{31}v_1+\gamma_{32}+\gamma_{33}v_3 \\ u1=γ11v1+γ12+γ13v3u2=γ21v1+γ22+γ23v3u3=γ31v1+γ32+γ33v3

用矩阵方程的形式表示为:
u = M v u=Mv u=Mv

对于三维空间中的某个点 w 来说,均可以由 u、v 这两个坐标系表示:
w = a T v = b T u w=a^Tv=b^Tu w=aTv=bTu

其中的 a T a^T aT b T b^T bT 其实就是 w 在这两个坐标系统中的坐标。再结合公式 (2),可以得到:

w = b T u = b T M v = a T v w=b^Tu=b^TMv=a^Tv w=bTu=bTMv=aTv

由此推出, a = M T b , b = ( M T ) − 1 a a=M^Tb,b=(M^T)^{-1}a a=MTb,b=(MT)1a

到这里,我们就发现:对于点 w 来说,想要从坐标系 A 转换到坐标系 B,只需要对原坐标系 A 中的坐标,乘以一个矩阵 M 即可。反之,则是乘以矩阵的逆 ( M T ) − 1 (M^T)^{-1} (MT)1。而这个矩阵M ,可以通过两个坐标系统的基向量,也就是坐标轴,通过公式 (1) 的矩阵方程进行求解。

在将物体从世界坐标系转到相机坐标系的过程中,只需要将这个矩阵应用到世界坐标系的物体坐标上,就可以得到三维物体相对于相机坐标系的位置坐标。

这个过程中,物体的实际位置没有发生任何改变,只不过它的坐标,从相对于世界坐标系,变成相对于相机坐标系。

在这里插入图片描述

齐次坐标(Homogenous Coordinates)

上面提到的变换矩阵 M 存在一点不足,那就是它只能表达旋转和缩放操作,但无法表达平移。具体原因有很多资料已做了描述,这里不再赘述。

在三维世界中,旋转、缩放、平移是三个最基础的操作,因此,为了将平移也融入矩阵运算中,人们引入了齐次坐标。

齐次坐标相比普通的三维坐标,就是在 x、y、z 之外,再引入一维 w:[x,y,z,w]。

同时我们规定 [x,y,z]=[x,y,z,w=1],即当 w=1 时,齐次坐标可以等价于普通的三维坐标。

如果 w ≠ 1 w\neq1 w=1 ,那换算方法是: [ x , y , z , w ] = [ x w , y w , z w ] [x,y,z,w] = [ \frac{x}{w},\frac{y}{w},\frac{z}{w}] [x,y,z,w]=[wx,wy,wz]

引入齐次坐标后,变换矩阵自然也可以拓展成 4x4 的维度。

[ m 00 m 01 m 02 T x m 10 m 11 m 12 T y m 20 m 21 m 22 T z 0 0 0 1 ] ∗ [ x y z w = 1 ] \left[ \begin{matrix} m_{00} & m_{01} & m_{02} & T_x \\ m_{10} & m_{11} & m_{12} & T_y \\ m_{20} & m_{21} & m_{22} & T_z \\ 0 & 0 & 0 & 1 \end{matrix} \right] * \left[ \begin{matrix} x \\ y \\ z \\ w=1 \end{matrix} \right] m00m10m200m01m11m210m02m12m220TxTyTz1 xyzw=1

在 w=1 的情况下,矩阵第 4 列代表的,就是 x、y、z 对应的平移量。

在之后投影矩阵的计算过程中,齐次坐标的作用会更加明显。

投影矩阵推导

假设我们已经获得了物体在相机坐标系中的坐标 P e = [ x e , y e , z e ] P_e=[x_e,y_e,z_e] Pe=[xe,ye,ze] (如果只有世界坐标系,也可以通过前面所讲的不同坐标系统的变换,来转换到相机坐标系,这一步也属于相机外参标定的流程)。

P e P_e Pe 从相机坐标系转换到 NDC 的过程,其实就是将 P e P_e Pe 从下图左边的棱锥转换到右边的立方体的过程 (这里使用 OpenGL 中的坐标习惯,NDC 将 x/y/z 轴都归一化到 [-1, 1]):
在这里插入图片描述
假设 Near Clipping Plane 到相机中心的距离为 n。在 OpenGL 等图形库中,由于相机坐标系的 z 轴是朝向屏幕外的,因此 Near Clipping Plane 上,点的 z 坐标均为 z = -n。

再假设 Near Clipping Plane 平面上,x 轴的屏幕范围是 [l,r],y 轴的屏幕范围是 [b,t],那么屏幕上四个边界点的坐标分别是:(l,t,-n)、(r,t,-n)、(l,b,-n)、(r,b,-n)

首先,将点 P e P_e Pe 投影到 Near Clipping Plane 上。根据上文的介绍,这就是 z divide 的过程,由此得到投影后的坐标为:

x p = n ∗ x e − z e y p = n ∗ y e − z e x_p = \frac{n*x_e}{-z_e} \\ y_p = \frac{n*y_e}{-z_e} \\ xp=zenxeyp=zenye

在投影后需要考虑把超出屏幕的点裁剪掉,不过这一步也可以放在后面进行,我们先跳过。

接下来就是把投影后的点转换到 NDC 空间了,这是归一化的过程,把 [l,r] 和 [b,t] 这两个区间的数值归一化到 [-1,1] 。可以分两步完成。

先把 x p x_p xp 归一化到 [0,1]: x p − l r − l \frac{x_p-l}{r-l} rlxpl

再从 [0,1] 归一化到 [-1,1]: 2 ∗ x p − l r − l − 1 2*\frac{x_p-l}{r-l}-1 2rlxpl1

x n d c = 2 ∗ x p − l r − l − 1 = 2 x p r − l − r + l r − l x_{ndc} = 2 * \frac{x_p-l}{r-l}-1 \\ = \frac{2x_p}{r-l} - \frac{r+l}{r-l} xndc=2rlxpl1=rl2xprlr+l

同理可得 y n d c y_{ndc} yndc:
y n d c = 2 y p t − b − t + b t − b y_{ndc} = \frac{2y_p}{t-b} - \frac{t+b}{t-b} yndc=tb2yptbt+b

由此我们已经得到了 NDC 中的 x/y 坐标(将上述 y p , x p y_p,x_p yp,xp代入)。完整的转换公式:

x n d c = 2 n ∗ x e − z e ∗ ( r − l ) − r + l r − l y n d c = 2 n ∗ y e − z e ∗ ( t − b ) − t + b t − b x_{ndc} = \frac{2n*x_e}{-z_e*(r-l)} - \frac{r+l}{r-l} \\ y_{ndc} = \frac{2n*y_e}{-z_e*(t-b)} - \frac{t+b}{t-b} xndc=ze(rl)2nxerlr+lyndc=ze(tb)2nyetbt+b

这个公式看起来复杂,但可以融入到齐次坐标中,变成矩阵运算:

[ x c y c z c w c ] = [ 2 n r − l 0 r + l r − l 0 0 2 n t − b t + b t − b 0 0 0 A B 0 0 − 1 0 ] ∗ [ x e y e z e w e = 1 ] \left[ \begin{matrix} x_c \\ y_c \\ z_c \\ w_c \end{matrix} \right ] = \left[ \begin{matrix} \frac{2n}{r-l} & 0 & \frac{r+l}{r-l} & 0 \\ 0& \frac{2n}{t-b} & \frac{t+b}{t-b} & 0 \\ 0& 0 & A & B \\ 0& 0 & -1 & 0 \\ \end{matrix} \right] * \left[ \begin{matrix} x_e \\ y_e \\ z_e \\ w_e = 1 \end{matrix} \right] xcyczcwc = rl2n0000tb2n00rlr+ltbt+bA100B0 xeyezewe=1

其中 A、B是待求解的参数。

x c x_c xc 为例,计算过程如下:
x c = 2 n x e r − l + r + l r − l ∗ z e w c = − z e x_c = \frac{2nx_e}{r-l} + \frac{r+l}{r-l} * z_e \\ w_c = -z_e xc=rl2nxe+rlr+lzewc=ze

由于 w ≠ 1 w\neq1 w=1,需要除去 w 才能得到最终的坐标

x n d c = x c w c = 2 n ∗ x e − z e ∗ ( r − l ) − r + l r − l x_{ndc} = \frac{x_c}{w_c} \\ = \frac{2n*x_e}{-z_e*(r-l)} - \frac{r+l}{r-l} xndc=wcxc=ze(rl)2nxerlr+l

这样子求出的 x n d c x_{ndc} xndc 和上述的一致,这就是使用齐次坐标的好处。

由于 r 和 l 是沿中心对称的,即 l=-r,所以 r-l=2r,r+l=0。同理 t-b=2t,t+b=0 。所以矩阵可以简化为:
[ n r 0 0 0 0 n t 0 0 0 0 A B 0 0 − 1 0 ] \left[ \begin{matrix} \frac{n}{r} & 0 & 0 & 0 \\ 0 & \frac{n}{t} & 0 & 0 \\ 0 & 0 & A & B \\ 0 & 0 & -1 & 0 \end{matrix} \right] rn0000tn0000A100B0

上面的矩阵中,还缺失 z e z_e ze 对应的参数 A、B。由于 z 轴的计算和 x/y 无关,因此矩阵第三行 x/y 对应的参数可以直接设为 0,我们单独看A、B 如何求解。

由上面的矩阵可以算出: z n d c = A ∗ z e + B − z e z_{ndc} = \frac{A*z_e+B}{-z_e} zndc=zeAze+B

假设 Far Clipping Plane 到相机中心的距离为 f 。那么 z 轴是从 [-n,-f] 归一化到 [-1,1],即 z e = − n z_e=-n ze=n 时, z n d c = − 1 z_{ndc} = -1 zndc=1 z e = − f z_e=-f ze=f 时, z n d c = 1 z_{ndc}=1 zndc=1。由此可以得到两个等式:

− A ∗ f + B f = 1 A ∗ n + B n = − 1 \frac{-A*f+B}{f} = 1 \\ \frac{A*n+B}{n} = -1 fAf+B=1nAn+B=1

解得: A = − f + n f − n A=-\frac{f+n}{f-n} A=fnf+n B = − − 2 f n f − n B=-\frac{-2fn}{f-n} B=fn2fn

最终的矩阵为:

[ n r 0 0 0 0 n t 0 0 0 0 − f + n f − n − 2 f n f − n 0 0 − 1 0 ] \left[ \begin{matrix} \frac{n}{r} & 0 & 0 & 0 \\ 0 & \frac{n}{t} & 0 & 0 \\ 0 & 0 & -\frac{f+n}{f-n} & \frac{-2fn}{f-n} \\ 0 & 0 & -1 & 0 \end{matrix} \right] rn0000tn0000fnf+n100fn2fn0

这个矩阵,即是所谓的投影矩阵,它可以完成相机坐标系到 NDC 坐标系的转换。

对于投影点的坐标 ( x n d c , y n d c , z n d c ) (x_{ndc},y_{ndc},z_{ndc}) (xndc,yndc,zndc),如果数值超出 [-1,1] 的范围,就说明投影后的点超出了屏幕范围,可以直接舍弃。

NeRF中的NDC ray space

NeRF 中的坐标,是以射线的形式表示:o+td,其中 o 是射线起点,d 是方向向量,t 是射线长度。

所谓的 NDC ray space,就是把这种射线形式表示的坐标,从相机坐标系投影到 NDC 坐标系。因此,转换的媒介仍然是投影矩阵:

( n r 0 0 0 0 n t 0 0 0 0 − f + n f − n − 2 f n f − n 0 0 − 1 0 ) ( x y z 1 ) = ( n r x n t y − f + n f − n z − 2 f n f − n − z ) p r o j e c t → ( n r x − z n t y − z f + n f − n − 2 f n f − n 1 − z ) \left( \begin{matrix} \frac{n}{r} & 0 & 0 & 0 \\ 0 & \frac{n}{t} & 0 & 0 \\ 0 & 0 & -\frac{f+n}{f-n} & \frac{-2fn}{f-n} \\ 0 & 0 & -1 & 0 \end{matrix} \right) \left( \begin{matrix} x \\ y \\ z \\ 1 \end{matrix} \right) = \left( \begin{matrix} \frac{n}{r} x\\ \frac{n}{t}y \\ -\frac{f+n}{f-n}z - \frac{2fn}{f-n} \\ -z \end{matrix} \right) \\ project \rightarrow \left( \begin{matrix} \frac{n}{r} \frac{x}{-z}\\ \frac{n}{t}\frac{y}{-z} \\ \frac{f+n}{f-n} - \frac{2fn}{f-n}\frac{1}{-z} \end{matrix} \right) rn0000tn0000fnf+n100fn2fn0 xyz1 = rnxtnyfnf+nzfn2fnz project rnzxtnzyfnf+nfn2fnz1

不过,由于坐标的表达形式换了,因此公式上也发生了一些变动

假设我们已经获得了相机坐标系中的坐标点 P e = o + t d P_e=o+td Pe=o+td,对应 x/y/z 轴的坐标分别为 (注意区分这里的 t 和投影平面的边界 t ):
x e = o x + t ∗ d x y e = o y + t ∗ d y z e = o z + t ∗ d z x_e = o_x+t*d_x \\ y_e = o_y+t*d_y \\ z_e = o_z+t*d_z xe=ox+tdxye=oy+tdyze=oz+tdz

现在需要求出它在 NDC 坐标系中的投影坐标,假设是 P ′ = o ′ + t ′ d ′ P'=o'+t'd' P=o+td

那么根据投影矩阵, P e P_e Pe 转换到 P’ 的过程可以表示为:

x ′ = o x ′ + t ′ ∗ d x ′ = − n r ∗ o x + t ∗ d x o z + t ∗ d z y ′ = o y ′ + t ′ ∗ d y ′ = − n t ∗ o y + t ∗ d y o z + t ∗ d z z ′ = o z ′ + t ′ ∗ d z ′ = f + n f − n + 2 f n f − n ∗ 1 o z + t ∗ d z x' = o'_x +t'*d'_x = - \frac{n}{r} * \frac{o_x+t*d_x}{o_z+t*d_z} \\ y' = o'_y +t'*d'_y = - \frac{n}{t} * \frac{o_y+t*d_y}{o_z+t*d_z} \\ z' = o'_z +t'*d'_z = \frac{f+n}{f-n} + \frac{2fn}{f-n}*\frac{1}{o_z+t*d_z} x=ox+tdx=rnoz+tdzox+tdxy=oy+tdy=tnoz+tdzoy+tdyz=oz+tdz=fnf+n+fn2fnoz+tdz1

为了简洁一些,假设 − n r = a x -\frac{n}{r} = a_x rn=ax − n t = a y -\frac{n}{t}=a_y tn=ay f + n f − n = a z \frac{f+n}{f-n}=a_z fnf+n=az 2 f n f − n = b z \frac{2fn}{f-n} = b_z fn2fn=bz。那么上面这堆复杂的式子可以简化为:

x ′ = a x ∗ o x + t ∗ d x o z + t ∗ d z y ′ = a y ∗ o y + t ∗ d y o z + t ∗ d z z ′ = a z ∗ b z o z + t ∗ d z x' = a_x * \frac{o_x+t*d_x}{o_z+t*d_z} \\ y' =a_y * \frac{o_y+t*d_y}{o_z+t*d_z} \\ z' =a_z * \frac{b_z}{o_z+t*d_z} x=axoz+tdzox+tdxy=ayoz+tdzoy+tdyz=azoz+tdzbz

接下来就是要把 o’、t’、d’ 求解出来。

首先,对于 o’ 来说,可以直接通过 o 投影得到,即让上述公式中 t为0:

o ′ = [ o x ′ o y ′ o z ′ ] = [ a x ∗ o x o z a y ∗ o y o z a z + b z o z ] o' = \left[ \begin{matrix} o'_x \\ o'_y \\ o'_z \\ \end{matrix} \right] = \left[ \begin{matrix} a_x * \frac{o_x}{o_z} \\ a_y * \frac{o_y}{o_z} \\ a_z+\frac{b_z}{o_z} \end{matrix} \right] o= oxoyoz = axozoxayozoyaz+ozbz

在 o’确定后,t‘*d’ 可以表示为:

[ t ′ ∗ d x ′ t ′ ∗ d y ′ t ′ ∗ d z ′ ] = [ x ′ − o x ′ y ′ − o y ′ y ′ − o z ′ ] \left[ \begin{matrix} t'*d'_x \\ t'*d'_y \\ t'*d'_z \end{matrix} \right] = \left[ \begin{matrix} x'-o'_x \\ y'-o'_y \\ y'-o'_z \\ \end{matrix} \right] tdxtdytdz = xoxyoyyoz
代入 o x ′ , o y ′ , o z ′ o'_x,o'_y,o'_z ox,oy,oz 并化简得到
在这里插入图片描述
解得:
t ′ = t ∗ d z o z + t ∗ d z = 1 − o z o z + t ∗ d z d ′ = [ a x ∗ ( d x d z − o x o z ) a y ∗ ( d y d z − o y o z ) − b z ∗ 1 o z ] t' = \frac{t*d_z}{o_z+t*d_z} = 1- \frac{o_z}{o_z+t*d_z} \\ d' = \left[ \begin{matrix} a_x * (\frac{d_x}{d_z} - \frac{o_x}{o_z}) \\ a_y * (\frac{d_y}{d_z} - \frac{o_y}{o_z}) \\ -b_z*\frac{1}{o_z} \end{matrix} \right] t=oz+tdztdz=1oz+tdzozd= ax(dzdxozox)ay(dzdyozoy)bzoz1

当 t = 0时,t’=0,当 t → ∞ t\rightarrow \infty t t ′ → 1 t' \rightarrow 1 t1。所以,在相机坐标系对光线进行采样 ( t ∈ ( 0 , ∞ ) t\in(0,\infty) t(0,)),就等价于在 NDC ray space 中,对 t’ 在 [0,1] 范围内进行采样。

对于投影屏幕来说,可以设定最后成像的图片长宽 (H*W) 和屏幕大小一致,由于投影屏幕的中心即是坐标原点,因此 r=w/2 ,t=H/2。再假定相机的焦距 f c a m f_{cam} fcamNear Clipping Plane 到相机中心的距离相等,即 n = f c a m n=f_{cam} n=fcam。则 a x , a y a_x,a_y ax,ay 可以重新表示为:

a x = − f c a m W / 2 a y = − f c a m H / 2 a_x = -\frac{f_{cam}}{W/2} \\ a_y = -\frac{f_{cam}}{H/2} \\ ax=W/2fcamay=H/2fcam

(所谓焦距,指的是相机光圈到成像平面的距离。但正如文章开始提到的,由于图形学中的相机是模拟的,所以并不存在焦距的概念。只是由于投影平面一般和 Near Clipping Plane 重合,因此可以简单认为 f c a m = n f_{cam} = n fcam=n ,但二者其实是不同的概念)

对于 a z a_z az b z b_z bz ,由于论文将 f 设定为无穷远,因此:

a z = lim ⁡ f → ∞ f + n f − n = lim ⁡ f → ∞ ( 1 + 2 n f − n ) = 1 a_z = \lim_{f \rightarrow \infty} \frac{f+n}{f-n} \\ =\lim_{f \rightarrow \infty}(1+\frac{2n}{f-n}) \\ = 1 az=flimfnf+n=flim(1+fn2n)=1

b z = lim ⁡ f → ∞ 2 f n f − n = lim ⁡ f → ∞ 2 n 1 − n f = 2 n b_z = \lim_{f \rightarrow \infty} \frac{2fn}{f-n} \\ =\lim_{f \rightarrow \infty} \frac{2n}{1-\frac{n}{f}} \\ = 2n bz=flimfn2fn=flim1fn2n=2n

可以得到最终的 o’ 和 d’
在这里插入图片描述

t   ∈ [ 0 , 1 ] t\ \in [0,1] t [0,1] 内采样,等价于相机坐标系中在 t ∈ [ 0 , ∞ ] t\in[0,\infty] t[0,] 范围内采样。但是,如前文描述的,相机坐标系的可视范围是从 Near Clipping PlaneFar Clipping Plane 之间,也就是在 z ∈ [ − ∞ ] , − n z\in[-\infty],-n z[],n 这个区间。为了保证光线上每个采样点可见,需要把光线起点对齐到 Near Clipping Plane 上。

即 o 沿光线方向移动 t n t_n tn 个单位后, o z = − z o_z = -z oz=z,表示成公式为:

o z + t n ∗ d z = − n t n = n + o z d z o_z+t_n*d_z = -n \\ t_n = \frac{n+o_z}{d_z} oz+tndz=ntn=dzn+oz

因此,移动后的光线起点为 o n = o + t n d o_n = o+t_n d on=o+tnd

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/231982.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

前端开发学习 (五) 生命周期函数、Ajax请求

关于vue实例的声明周期,从Vue实例创建、运行、到销毁期间,总是伴随着各种各样的事件,这些事件,统称为生命周期 (https://cn.vuejs.org/v2/guide/instance.html#实例生命周期 ) 而声明周期勾子就是生命周期…

uniapp切换页面时报错问题

我们来看如下错误: 该错误的意思是不能切换到 tabbar 页面。tabbar页面通常是公共页面或者底部导航栏,如果我们用 navigateTo 或者 redirectTo 都不能实现页面切换。 我们有两种方式: 第一种是用 switchTab 来进行切换,但注意切…

了解c++11中的新增

一,统一的初始化列表 在引入c11后,我们得出计划都可以用初始化列表进行初始化。 C11 扩大了用大括号括起的列表 ( 初始化列表 ) 的使用范围,使其可用于所有的内置类型和用户自 定义的类型, 使用初始化列表时,可添加等…

从简单的词法分析、语法分析、目标代码生成、语法解释器的过程,粗略讲一下代码的运行过程

目录 简述 为什么能常说C、C语言比C#或java性能好呢 编程语言类别 代码实现一个从源码到到AST再到Interpreter 词法分析器(Lexer) 语法分析器(Parser) 解释器(Interpreter) 代码生成器(C…

uni-app 设置当前page界面进入直接变为横屏模式

首先 我们打开项目的 manifest.json 在左侧导航栏中找到 源码视图 然后找到 app-plus 配置 在下面加上 "orientation": [//竖屏正方向"portrait-primary",//竖屏反方向"portrait-secondary",//横屏正方向"landscape-primary",//横屏…

智能优化算法应用:基于侏儒猫鼬算法无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于侏儒猫鼬算法无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于侏儒猫鼬算法无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.侏儒猫鼬算法4.实验参数设定5.算法结果6.参考…

智能优化算法应用:基于海鸥算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于海鸥算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于海鸥算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.海鸥算法4.实验参数设定5.算法结果6.参考文献7.MA…

mapbox导入本地geojson数据并渲染

成果图 思路与源码 我这里使用的是ant的upload组件 <a-uploadv-model:file-list"fileList":showUploadListfalsename"file"action"https://www.mocky.io/v2/5cc8019d300000980a055e76":headers"headers"change"handleChange&…

Redis主从复制的配置和实现原理

Redis的持久化功能在一定程度上保证了数据的安全性&#xff0c;即便是服务器宕机的情况下&#xff0c;也可以保证数据的丢失非常少。通常&#xff0c;为了避免服务的单点故障&#xff0c;会把数据复制到多个副本放在不同的服务器上&#xff0c;且这些拥有数据副本的服务器可以用…

Leetcode—290.单词规律【简单】

2023每日刷题&#xff08;五十一&#xff09; Leetcode—290.单词规律 实现代码 class Solution { public:bool wordPattern(string pattern, string s) {unordered_map<char, string> m1;unordered_map<string, char> m2;stringstream stro(s);string tmp;for(a…

配电室无人值守改造

配电室无人值守改造是通过运用先进的技术和设备&#xff0c;将传统的需要人工值守的配电室改造成可以远程监控和管理的智能化配电室&#xff0c;从而实现无人值守。这种改造可以提高配电室的安全性、可靠性和效率&#xff0c;降低运维成本。 建立智能监控系统&#xff1a;通过安…

luceda ipkiss教程 44:在PyCharm 中设置Template text

通过设置Template text&#xff0c;可以提升写代码的速度和版图设计效率。 设置了Template text&#xff0c;在PyCharm 命令窗口输入i3后按enter建&#xff0c;就可以快速输入 from ipkiss3 import all as i3 这一段代码&#xff0c;使用起来也是非常方便&#xff1a; 设置过程…

Ubuntu上svn基本使用(gitee提交下载)

目录 环境准备 1. 获取代码到本地 直接获取 获取代码时加入用户名密码 指定版本更新 2. 提交代码 3. 展示代码列表 4. 添加代码文件(目录) 5. 删除gitee仓库中的文件 参考文档链接 环境准备 当前操作系统为Ubuntu22.04LTS gitee 创建仓库时 需要打开svn的支持 sudo…

电脑软件:TileIconifier开始菜单美化工具介绍

目录 一、 软件介绍 二、软件功能 三、使用说明 四、软件下载 一、 软件介绍 TileIconifier是一款简单易用的win10开始菜单美化软件&#xff0c;该程序具备了简单直观的操作界面&#xff0c;打开软件后&#xff0c;您可以在快捷方式列表下选择要美化的快捷方式&#xff0c;…

Billu_b0x

信息收集 #正常进行信息收集就好Starting Nmap 7.94 ( https://nmap.org ) at 2023-11-18 22:07 CST Nmap scan report for 192.168.182.142 (192.168.182.142) Host is up (0.00073s latency).PORT STATE SERVICE 22/tcp open ssh 80/tcp open http | http-cookie-flags:…

哈希表的几种实现方式与比较

版权声明 本文原创作者&#xff1a;谷哥的小弟作者博客地址&#xff1a;http://blog.csdn.net/lfdfhl 哈希表概述 哈希表&#xff08;Hash Table&#xff09;是一种常用的数据结构&#xff0c;用于实现键值对的映射关系。它通过哈希函数将键映射到一个特定的索引位置&#xf…

解决 Cannot read properties of undefined (reading ‘getUserMedia‘) 报错

[TOC](解决 Cannot read properties of undefined (reading ‘getUserMedia’) 报错) 0. 背景 使用浏览器输入语音时&#xff0c;浏览器的控制台里面有下面错误信息。 Cannot read properties of undefined (reading getUserMedia)1. 解决方法 在浏览器中访问 chrome://fla…

在AWS Lambda上部署EC2编译的FFmpeg工具——自定义层的方案

大纲 1 确定Lambda运行时环境1.1 Lambda系统、镜像、内核版本1.2 运行时1.2.1 Python1.2.2 Java 2 环境准备2.1 创建EC2实例 3 编译FFmpeg3.1 连接EC2 4 编译5 上传S3存储桶5.1 创建S3桶5.2 创建IAM策略5.3 创建IAM角色5.4 EC2关联角色5.5 修改桶策略5.6 打包并上传 6 创建Lamb…

SAP 标准成本估算基础知识 - 了解成本设置流程 - Part1

原文地址&#xff1a;Basics of SAP Standard Cost estimate- Understanding the flow of cost settings-Part 1 SCN 中有很多关于标准成本计算的论坛问题解答和内容 注意 - 这是初学者的基本指南&#xff0c;用于了解成本估算及其背后的各种设置。 本文件旨在解释标准成本…

Mybatis环境搭建

1、开发环境 IDE&#xff1a;IntelliJ IDEA 2022.2.1 (Ultimate Edition) 构建工具&#xff1a;maven 3.6.1 MySQL版本&#xff1a;MySQL 5.7 MyBatis版本&#xff1a;MyBatis 3.5.14 2、工程创建 创建一个Maven工程giser-java-mybatis-demo 基础依赖如下&#xff1a; &…