人工智能教程(三):更多有用的 Python 库

图片

目录

前言

推荐

JupyterLab 入门

复杂的矩阵运算

其它人工智能和机器学习的 Python 库


前言

在本系列的上一篇人工智能教程(二):人工智能的历史以及再探矩阵中,我们回顾了人工智能的历史,然后详细地讨论了矩阵。在本系列的第三篇文章中,我们将了解更多的矩阵操作,同时再介绍几个人工智能 Python 库。

推荐

前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站

在进入主题之前,我们先讨论几个人工智能和机器学习中常用的重要术语。人工神经网络(artificial neural network)(通常简称为神经网络(neural network),NN)是机器学习和深度学习的核心。顾名思义,它是受人脑的生物神经网络启发而设计的计算模型。本文中我没有插入神经网络模型的图片,因为在互联网上很容易找到它们。我相信任何对人工智能感兴趣的人应该都见过它们,左边是输入层,中间是一个或多个隐藏层,右边是输出层。各层之间的边上的权重(weight) 会随着训练不断变化。它是机器学习和深度学习应用成功的关键。

监督学习(supervised learning) 和 无监督学习(unsupervised learning) 是两个重要的机器学习模型。从长远来看,任何立志于从事人工智能或机器学习领域工作的人都需要学习它们,并了解实现它们的各种技术。这里我认为有必要简单说明两种模型之间的区别了。假设有两个人分别叫 A 和 B,他们要把苹果和橘子分成两组。他们从未见过苹果或橘子。他们都通过 100 张苹果和橘子的图片来学习这两种水果的特征(这个过程称为模型的训练)。不过 A 还有照片中哪些是苹果哪些是橘子的额外信息(这个额外信息称为标签)。这里 A 就像是一个监督学习模型,B 就像是无监督学习模型。你认为在是识别苹果和橘子的任务上,谁的效果更好呢?大多数人可能会认为 A 的效果更好。但是根据机器学习的理论,情况并非总是如此。如果这 100 张照片中只有 5 张是苹果,其它都是橘子呢?那么 A 可能根本就不熟悉苹果的特征。或者如果部分标签是错误的呢?在这些情况下,B 的表现可能比 A 更好。

在实际的机器学习应用中会发生这样的情况吗?是的!训练模型用的数据集可能是不充分的或者不完整的。这是两种模型都仍然在人工智能和机器学习领域蓬勃发展的众多原因之一。在后续文章中,我们将更正式地讨论它们。下面我们开始学习使用 JupyterLab,它是一个用于开发人工智能程序的强大工具。

JupyterLab 入门

在本系列的前几篇文章中,为了简单起见,我们一直使用 Linux 终端运行 Python 代码。现在要介绍另一个强大的人工智能工具——JupyterLab。在本系列的第一篇文章中,我们对比了几个候选项,最终决定使用 JupyterLab。它比 Jupyter Notebook 功能更强大,为我们预装了许多库和包,并且易于团队协作。还有一些其它原因,我们将在后续适时探讨它们。

在本系列的第一篇文章中,我们已经学习了如何安装 JupyterLab。假设你已经按文中的步骤安装好了 JupyterLab,使用 jupyter lab 或 jupyter-lab 命令在会默认浏览器(如 Mozilla Firefox谷歌 Chrome 等)中打开 JupyterLab。(LCTT 译注:没有安装 JupyterLab 也不要紧,你可以先 在线试用 JupyterLabjupyter.org)图 1 是在浏览器中打开的 JupyterLab 启动器的局部截图。JupyterLab 使用一个名为 IPython(交互式 Python)的 Python 控制台。注意,IPython 其实可以独立使用,在 Linux 终端运行 ipython 命令就可以启动它。

图片

现阶段我们使用 JupyterLab 中的 Jupyter Notebook 功能。点击图 1 中用绿框标记的按钮,打开 Jupyter Notebook。这时可能会要求你选择内核。如果你按照本系列第一篇的步骤安装 JupyterLab,那么唯一的可选项就是 Python 3(ipykernel)。请注意,你还可以在 JupyterLab 中安装其它编程语言的内核,比如 C++、R、MATLAB、Julia 等。事实上 Jupyter 的内核相当丰富,你可以访问 Jupyter 内核清单github.com 了解更多信息。

图片

下面我们快速了解一下 Jupyter Notebook 的使用。图 2 显示的是一个在浏览器中打开的 Jupyter Notebook 窗口。从浏览器标签页的标题可以看出,Jupyter Notebook 打开的文件的扩展名是 .ipynb

在图中可以看到有三个选项,它们表示 Jupyter Notebook 中可以使用的三种类型的单元。“Code”(绿色框) 表示代码单元,它是用来执行代码的。“Markdown” 单元可用于输入说明性的文本。如果你是一名计算机培训师,可以用代码单元和 Markdown 单元来创建交互式代码和解释性文本,然后分享给你的学员。“Raw”(红色框)表示原始数据单元,其中的内容不会被格式化或转换。

和在终端中不同,在 Jupyter Notebook 中你可以编辑并重新运行代码,这在处理简单的拼写错误时特别方便。图 3 是在 Jupyter Notebook 中执行 Python 代码的截图。

图片

要在执行代码单元中的代码,先选中该单元格,然后点击蓝框标记的按钮。图示中用红框标记的是 Markdown 单元,用绿框标记的是代码单元,用黄框标记的执行代码的输出。在这个例子中,Python 代码输出的是 π 的值。

前面提到,JupyterLab 默认安装了许多库和包,我们不用自己安装了。你可以使用 import 命令将这些库导入到代码中。使用 !pip freeze 命令可以列出 JupyterLab 中目前可用的所有库和包。如果有库或包没有安装,大多数情况下都可以通过 pip install <全小写的库或者包的名称> 来安装它们。例如安装 TensorFlow 的命令是 pip install tensorflow。如果后面有库的安装命令不遵循这个格式,我会进行特别说明。随着本系列的继续,我们还会看到 Jupyter Notebook 和 JupyterLab 更多强大的功能。

复杂的矩阵运算

通过下面的代码,我们来了解一些更复杂的矩阵运算或操作。为了节省空间,我没有展示代码的输出。

import numpy as np
A = np.arr ay([[1,2,3],[4,5,6],[7,8,88]])
B = np.arr ay([[1,2,3],[4,5,6],[4,5,6]])
print(A.T)
print(A.T.T)
print(np.trace(A))
print(np.linalg.det(A))
C = np.linalg.inv(A)
print(C)
print(A@C)

下面我逐行来解释这些代码:

  1. 导入 NumPy 包。
  2. 创建矩阵 A
  3. 创建矩阵 B
  4. 打印矩阵 A 的转置(transpose)。通过比较矩阵 A 与 A 的转置,你用该可以大致理解转置操作到底做了什么。
  5. 打印 A 的转置的转置。可以看到它和矩阵 A 是相同的。这又提示了转置操作的含义。
  6. 打印矩阵 A 的 迹(trace)。迹是矩阵的对角线(也称为主对角线)元素的和。矩阵 A 的主对角线元素是 1、5 和 88,所以输出的值是 94。
  7. 打印 A 的行列式(determinant)。当执行代码的结果是 -237.00000000000009(在你的电脑中可能略有区别)。因为行列式不为 0,所以称 A 为非奇异矩阵(non-singular matrix)。
  8. 将矩阵 A 的逆(inverse) 保存到矩阵 C 中。
  9. 打印矩阵 C
  10. 打印矩阵 A 和 C 的乘积。仔细观察,你会看到乘积是一个单位矩阵(identity matrix),也就是一个所有对角线元素都为 1,所有其它元素都为 0 的矩阵。请注意,输出中打印出的不是精确的 1 和 0。在我得到的答案中,有像 -3.81639165e-17 这样的数字。这是浮点数的科学记数法,表示 -3.81639165 × 10-17, 即小数的 -0.0000000000000000381639165,它非常接近于零。同样输出中的其它数字也会有这种情况。我强烈建议你了解计算机是怎样表示浮点数的,这对你会有很大帮助。

根据第一篇文章中的惯例,可以将代码分成基本 Python 代码和人工智能代码。在这个例子中,除了第 1 行和第 9 行之外的所有代码行都可以被看作是人工智能代码。

现在将第 4 行到第 10 行的操作应用到矩阵 B 上。从第 4 行到第 6 行代码的输出没有什么特别之处。然而运行第 7 行时,矩阵 B 的行列式为 0,因此它被称为奇异矩阵(singular matrix)。运行第 8 行代码会给产生一个错误,因为只有非奇异矩阵才存在逆矩阵。你可以尝试对本系列前一篇文章中的 8 个矩阵都应用相同的操作。通过观察输出,你会发现矩阵的行列式和求逆运算只适用于方阵。

方阵就是行数和列数相等的矩阵。在上面的例子中我只是展示了对矩阵执行各种操作,并没有解释它们背后的理论。如果你不知道或忘记了矩阵的转置、逆、行列式等知识的话,你最好自己学习它们。同时你也应该了解一下不同类型的矩阵,比如单位矩阵、对角矩阵、三角矩阵、对称矩阵、斜对称矩阵。维基百科上的相关文章是不错的入门。

现在让我们来学习矩阵分解(matrix decomposition),它是更复杂的矩阵操作。矩阵分解与整数的因子分解类似,就是把一个矩阵被写成其它矩阵的乘积。下面我通过图 4 中整数分解的例子来解释矩阵分解的必要性。代码单元开头的 %time 是 Jupyter Notebook 的魔法命令(magic command),它会打印代码运行所花费的时间。** 是 Python 的幂运算符。基本的代数知识告诉我们,变量 a 和 b 的值都等于 (6869 x 7873)100。但图 4 显示计算变量 b 的速度要快得多。事实上,随着底数和指数的增大,执行时间的减少会越来越明显。

图片

在几乎所有的矩阵分解技术技术中,原始矩阵都会被写成更稀疏的矩阵的乘积。稀疏矩阵(sparse matrix)是指有很多元素值为零的矩阵。在分解后,我们可以处理稀疏矩阵,而不是原始的具有大量非零元素的密集矩阵(dense matrix)。在本文中将介绍三种矩阵分解技术——LUP 分解、特征分解(eigen decomposition)和奇异值分解(singular value decomposition)(SVD)。

为了执行矩阵分解,我们需要另一个强大的 Python 库,SciPy。SciPy 是基于 NumPy 库的科学计算库,它提供了线性代数、积分、微分、优化等方面的函数。首先,让我们讨论 LUP 分解。任何方阵都能进行 LUP 分解。LUP 分解有一种变体,称为 LU 分解。但并不是所有方阵都能 LU 分解。因此这里我们只讨论 LUP 分解。

在 LUP 分解中,矩阵 A 被写成三个矩阵 L、U 和 P 的乘积。其中 L 是一个下三角矩阵(lower triangular matrix),它是主对角线以上的所有元素都为零的方阵。U 是一个上三角矩阵(upper triangular matrix),它是主对角线以下所有元素为零的方阵。P 是一个排列矩阵(permutation matrix)。这是一个方阵,它的每一行和每一列中都有一个元素为 1,其它元素的值都是 0。

现在看下面的 LUP 分解的代码。

import numpy as np
import scipy as sp
A=np.array([[11,22,33],[44,55,66],[77,88,888]])
P, L, U = sp.linalg.lu(A)
print(P)
print(L)
print(U)
print(P@L@U)

图 5 显示了代码的输出。第 1 行和第 2 行导入 NumPy 和 SciPy 包。在第 3 行创建矩阵 A。请记住,我们在本节中会一直使用矩阵 A。第 4 行将矩阵 A 分解为三个矩阵——PL 和 U。第 5 行到第 7 行打印矩阵 PL 和 U。从图 5 中可以清楚地看出,P 是一个置换矩阵,L 是一个下三角矩阵,U 是一个上三角矩阵。最后在第 8 行将这三个矩阵相乘并打印乘积矩阵。从图 5 可以看到乘积矩阵 P@L@U 等于原始矩阵 A,满足矩阵分解的性质。此外,图 5 也验证了矩阵 LU 和 P 比矩阵 A 更稀疏。

图片

下面我们讨论特征分解,它是将一个方阵是用它的特征值(eigenvalue)和特征向量(eigenvector)来表示。用 Python 计算特征值和特征向量很容易。关于特征值和特征向量的理论解释超出了本文的讨论范围,如果你不知道它们是什么,我建议你通过维基百科等先了解它们,以便对正在执行的操作有一个清晰的概念。图 6 中是特征分解的代码。

图片

在图 6 中,第 1 行计算特征值和特征向量。第 2 行和第 3 行输出它们。注意,使用 NumPy 也能获得类似的效果,Lambda, Q = np.linalg.eig(A)。这也告诉我们 NumPy 和 SciPy 的功能之间有一些重叠。第 4 行重建了原始矩阵 A。第 4 行中的代码片段 np.diag(Lambda) 是将特征值转换为对角矩阵(记为 Λ)。对角矩阵是主对角线以外的所有元素都为 0 的矩阵。第 4 行的代码片段 sp.linalg.inv(Q) 是求 Q 的逆矩阵(记为 Q-1)。最后,将三个矩阵 QΛQ-1 相乘得到原始矩阵 A。也就是在特征分解中 A=QΛQ-1。

图 6 还显示了执行的代码的输出。红框标记的是特征值,用绿框标记的是特征向量,重构的矩阵 A 用蓝框标记。你可能会感到奇怪,输出中像 11.+0.j 这样的数字是什么呢?其中的 j 是虚数单位。11.+0.j 其实就是 11.0+0.0j,即整数 11 的复数形式。

现在让我们来看奇异值分解(SVD),它是特征分解的推广。图 7 显示了 SVD 的代码和输出。第 1 行将矩阵 A 分解为三个矩阵 US 和 V。第 2 行中的代码片段 np.diag(S) 将 S 转换为对角矩阵。最后,将这三个矩阵相乘重建原始矩阵 A。奇异值分解的优点是它可以对角化非方阵。但非方阵的奇异值分解的代码稍微复杂一些,我们暂时不在这里讨论它。

图片

其它人工智能和机器学习的 Python 库

当谈到人工智能时,普通人最先想到的场景可能就是电影《终结者》里机器人通过视觉识别一个人。计算机视觉(computer vision)是人工智能和机器学习技术被应用得最广泛的领域之一。下面我将介绍两个计算机视觉相关的库:OpenCV 和 Matplotlib。OpenCV 是一个主要用于实时计算机视觉的库,它由 C 和 C++ 开发。C++ 是 OpenCV 的主要接口,它通过 OpenCV-Python 向用户提供 Python 接口。Matplotlib 是基于 Python 的绘图库。我曾在 OSFY 上的一篇早期 文章www.opensourceforu.com 中详细介绍了 Matplotlib 的使用。

前面我一直在强调矩阵的重要性,现在我用一个实际的例子来加以说明。图 8 展示了在 Jupyter Notebook 中使用 Matplotlib 读取和显示图像的代码和输出。如果你没有安装 Matplotlib,使用 pip install matplotlib 命令安装 Matplotlib。

图片

图 8:用 Matplotlib 读取和显示图像

在图 8 中,第 1 行和第 2 行从 Matplotlib 导入了一些函数。注意你可以从库中导入单个函数或包,而不用导入整个库。这两行是基本的 Python 代码。第 3 行从我的计算机中读取标题为 OSFY-Logo.jpg 的图像。我从 OSFY 门户网站的首页下载了这张图片。此图像高 80 像素,宽 270 像素。第 4 行和第 5 行在 Jupyter Notebook 窗口中显示图像。请注意图像下方用红框标记的两行代码,它的输出告诉我们变量 image 实际上是一个 NumPy 数组。具体来说,它是一个 80 x 270 x 3 的三维数组。

数组尺寸中的 80 x 270 就是图片的大小,这一点很容易理解。但是第三维度表示什么呢?这是因计算机像通常用 RGB 颜色模型来存储的彩色图。它有三层,分别用于表示红绿蓝三种原色。我相信你还记得学生时代的实验,把原色混合成不同的颜色。例如,红色和绿色混合在一起会得到黄色。在 RGB 模型中,每种颜色的亮度用 0 到 255 的数字表示。0 表示最暗,255 表示最亮。因此值为 (255,255,255) 的像素表示纯白色。

现在,执行代码 print(image), Jupyter Notebook 会将整个数组的一部分部分打印出来。你可以看到数组的开头有许多 255。这是什么原因呢?如果你仔细看 OSFY 的图标会发现,图标的边缘有很多白色区域,因此一开始就印了很多 255。顺便说一句,你还可以了解一下其他颜色模型,如 CMY、CMYK、HSV 等。

现在我们反过来从一个数组创建一幅图像。首先看图 9 中所示的代码。它展示了如何生成两个 3 x 3 的随机矩阵,它的元素是 0 到 255 之间的随机值。注意,虽然相同的代码执行了两次,但生成的结果是不同的。这是通过调用 NumPy 的伪随机数生成器函数 randint 实现的。实际上,我中彩票的几率都比这两个矩阵完全相等的几率大得多。

图片

接下来我们要生成一个形状为 512 x 512 x 3 的三维数组,然后将它转换为图像。为此我们将用到 OpenCV。注意,安装 OpenCV 命令是 pip install opencv-python。看下面的代码:

import cv2
img = np.random.randint(0, 256, size=(512, 512, 3))
cv2.imwrite('img.jpg', img)

第 1 行导入库 OpenCV。注意导入语句是 import cv2,这与大多数其他包的导入不同。第 3 行将矩阵 img 转换为名为 img.jpg 的图像。图 10 显示了由 OpenCV 生成的图像。在系统中运行这段代码,将图像将被保存在 Jupyter Notebook 的同一目录下。如果你查看这张图片的属性,你会看到它的高度是 512 像素,宽度是 512 像素。通过这些例子,很容易看出,任何处理计算机视觉任务的人工智能和机器学习程序使用了大量的数组、向量、矩阵以及线性代数中的思想。这也是本系列用大量篇幅介绍数组、向量和矩阵的原因。

图片

最后,考虑下面显示的代码。image.jpg 输出图像会是什么样子?我给你两个提示。函数 zeros 在第 4 行和第 5 行创建了两个 512 x 512 的数组,其中绿色和蓝色填充了零。第 7 行到第 9 行用来自数组 redgreen 和 blue 的值填充三维数组 img1

import numpy as np
import cv2
red = np.random.randint(0, 256, size=(512, 512))
green = np.zeros([512, 512], dtype=np.uint8)
blue = np.zeros([512, 512], dtype=np.uint8)
img1 = np.zeros([512,512,3], dtype=np.uint8)
img1[:,:,0] = blue
img1[:,:,1] = green
img1[:,:,2] = red
cv2.imwrite(‘image.jpg’, img1)

本期的内容就到此结束了。在下一篇文章中,我们将开始简单地学习张量(tensor),然后安装和使用 TensorFlow。TensorFlow 是人工智能和机器学习领域的重要参与者。之后,我们将暂时放下矩阵、向量和线性代数,开始学习概率论。概率论跟线性代数一样是人工智能的重要基石。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/230886.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

导入PR的视频画面是黑屏的怎么办?

在现代视频编辑领域中&#xff0c;越来越多的人使用Adobe Premiere Pro来编辑和制作视频&#xff0c;但是在某些情况下&#xff0c;用户可能需要透明背景的视频进行创作&#xff0c;那么如何创作透明背景的视频呢&#xff1f; 要制作具有透明背景的视频&#xff0c;我们需要使…

深度探索Linux操作系统 —— 构建initramfs

系列文章目录 深度探索Linux操作系统 —— 编译过程分析 深度探索Linux操作系统 —— 构建工具链 深度探索Linux操作系统 —— 构建内核 深度探索Linux操作系统 —— 构建initramfs 文章目录 系列文章目录前言一、为什么需要 initramfs二、initramfs原理探讨三、构建基本的init…

在Windows 11中,至少有四种方法可以创建用户

本文介绍如何在Windows11上添加另一个用户(或多个用户)。 使用设置添加其他用户 这是创建新用户的“正常”方式。这是一个简单的过程,允许你添加Microsoft、本地或家庭帐户。 添加Microsoft或本地帐户 按照以下步骤将Microsoft帐户添加到Windows 11或创建新的本地用户。…

论文阅读:PointCLIP: Point Cloud Understanding by CLIP

CVPR2022 链接&#xff1a;https://arxiv.org/pdf/2112.02413.pdf 0、Abstract 最近&#xff0c;通过对比视觉语言预训练(CLIP)的零镜头学习和少镜头学习在2D视觉识别方面表现出了鼓舞人心的表现&#xff0c;即学习在开放词汇设置下将图像与相应的文本匹配。然而&#xff0c;…

实现手机扫码——扫描识别路由器参数

有个应用是批量自动检测无线路由器&#xff0c;检测前需要自动登录路由器的管理界面进行设置&#xff0c;如设置wifi参数、连接模式&#xff0c;或者恢复出厂设置等。进入管理界面的登录用户名是admin&#xff0c;密码则各不相同。此外也需要知道路由器的MAC地址&#xff0c;因…

Qt基础-程序打包发布方法

本文讲解Qt程序打包发布方法。 一、使用Qt自带的windeployqt 生成可运行的包 准备将Qt生成的exe拷入到单独的文件夹,并进行命名,本文命名为packDemorun,并将文件放到D盘(自己随意放置) 1、找到Qt自带的命令终端 2、启动命令终端 3、输入:cd /d D:\packDemorun,进入文…

质量工程化,交付快速化

质量和速度之间权衡让人很难取舍&#xff0c;而通过推进质量工程&#xff0c;以系统化的方式识别和优化系统痛点&#xff0c;可以帮助团队构建既快又好的精益软件生产系统。原文: Quality Engineered, Speed Delivered 所有人都想要更快的速度。 但需要解决复杂问题: 权衡质量会…

小程序时代的机遇:开发成功的知识付费平台

知识付费平台不仅为知识创作者提供了广阔的变现渠道&#xff0c;同时也为用户提供了更为个性化、精准的学习体验。本篇文章&#xff0c;小编将为大家讲解知识付费小程序开发相关的知识。 一、小程序时代的背景 知识付费作为小程序领域中的“大热门”&#xff0c;有着非常高的…

整数在内存中的存储

整数和浮点数在内存中的存储方式是不一样的&#xff0c;今天&#xff0c;我们来具体学习一下 文章目录 整数在内存中的存储浮点数在内存中的存储 整数在内存中的存储 我们在之前就已经了解过了整数有原码&#xff0c;反码&#xff0c;补码的形式&#xff0c;这三种方式都是二进…

springboot 集成Dubbo2.7.8 ,连接zookeeper 提示错误 zookeeper not connected

Dubbo 连接zookeeper时&#xff0c;提示“zookeeper not connected” java.lang.IllegalStateException: zookeeper not connectedat org.apache.dubbo.remoting.zookeeper.curator.CuratorZookeeperClient.<init>(CuratorZookeeperClient.java:83) ~[dubbo-2.7.8.jar:2.…

【每周一测】Java阶段四第二周学习

目录 1、在MyBatis中&#xff0c;当实体类中的属性名和表中的字段名不一样&#xff0c;除了&#xff08; &#xff09;都可以实现属性和数据的映射。 2、下列数组定义及赋值&#xff0c;错误的是&#xff08; &#xff09; 3、关于会话跟踪以下说法错误的&#xff08; &…

C++ Qt开发:Qt的安装与配置

Qt是一种C编程框架&#xff0c;用于构建图形用户界面&#xff08;GUI&#xff09;应用程序和嵌入式系统。Qt由Qt公司&#xff08;前身为Nokia&#xff09;开发&#xff0c;提供了一套跨平台的工具和类库&#xff0c;使开发者能够轻松地创建高效、美观、可扩展的应用程序。其被广…

多线程(进阶一:锁策略)

一、乐观锁和悲观锁 二、轻量级锁和重量级锁 三、自旋锁和挂起等待锁 四、普通互斥锁和读写锁 五、公平锁和非公平锁 六、可重入锁和不可重入锁 七、synchronized和Linux的mutex锁的简单比较 八、synchronized的自适应 一、乐观锁和悲观锁 乐观锁&#xff1a;在加锁之前…

启动游戏出现concrt140.dll错误的8种解决方法

在计算机使用过程中&#xff0c;我们经常会遇到一些错误提示&#xff0c;其中之一就是找不到concrt140.dll文件。这个错误通常会导致程序无法正常运行&#xff0c;给用户带来困扰。本文将介绍找不到concrt140.dll无法继续执行代码的8个方法&#xff0c;同时探讨concrt140.dll丢…

【活动】内容运营活动,你做对了吗?

内容运营活动&#xff0c;首先应该确认本次活动的主题&#xff0c;明确目标受众&#xff0c;分析这类用户的使用场景&#xff0c;感兴趣的话题等&#xff0c;结合市场的热点&#xff0c;探讨活动的形式&#xff0c;过程节点&#xff0c;活动奖励等内容&#xff08;头脑风暴形式…

Unity打包到Webgl平台以及遇到的问题

Unity打包到Webgl平台以及遇到的问题 参考网站 Unity打包WebGL的全过程及在打包和使用过程中会遇到的问题(本地测试)-CSDN博客 unity打包到Webgl 并配置能正常运行 这里我用的是Unity2022.3.3f1c1版本 有两种方法 1、配置本地web服务 2、安装vsCode>添加插件LiveServe…

使用git出现的问题

保证 首先保证自己的git已经下载 其次保证自己的gitee账号已经安装并且已经生成ssh公钥 保证自己要push的代码在要上传的文件夹内并且配置文件等都在父文件夹&#xff08;也就是文件没有套着文件&#xff09; 问题 1 $ git push origin master gitgitee.com: Permission de…

laravel的ORM 对象关系映射

Laravel 中的 ORM&#xff08;Eloquent ORM&#xff09;是 Laravel 框架内置的一种对象关系映射系统&#xff0c;用于在 PHP 应用中与数据库进行交互。Eloquent 提供了一种优雅而直观的语法&#xff0c;使得开发者可以使用面向对象的方式进行数据库查询和操作。 定义模型&…

Git 请输入一个提交信息以解释此合并的必要性

操作方法&#xff1a;按住Ctrl加下面的某个字母

linux-man命令的使用及练习

目录 1. 命令概述 2. 使用 3. 练习 ?man services时报错&#xff1a;No manual entry for services的解决办法 4. man命令中常用按键以及用途 1. 命令概述 Linux提供了丰富的帮助手册&#xff0c;当你需要查看某个命令的参数时不必到处上网查找&#xff0c;只要man一下即…