高效的多维空间点索引算法——GeoHash

一、Geohash 算法简介

    GeoHash是空间索引的一种方式,其基本原理是将地球理解为一个二维平面,通过把二维的空间经纬度数据编码为一个字符串,可以把平面递归分解成更小的子块,每个子块在一定经纬度范围内拥有相同的编码。以GeoHash方式建立空间索引,可以提高对空间poi数据进行经纬度检索的效率。Geohash 属于空间填充曲线中的 Z 阶曲线(Z-order curve)的实际应用。

    Geohash是一种地址编码,它能把二维的经纬度编码成一维的字符串,Geohash 就常常被用来作为唯一标识符。用在数据库里面可用 Geohash 来表示一个点。Geohash 这个公共前缀的特性就可以用来快速的进行邻近点的搜索。越接近的点通常和目标点的 Geohash 字符串公共前缀越长

1.Z曲线

上图就是 Z 阶曲线。生成它只需要把每个 Z 首尾相连即可。

    Z 阶曲线同样可以扩展到三维空间。只要 Z 形状足够小并且足够密,也能填满整个三维空间。Geohash算法 的理论基础就是基于 Z 曲线的生成原理。

2.Geohash基础

    Geohash 能够提供任意精度的分段级别。一般分级从 1-12 级。

    可以利用 Geohash 的字符串长短来决定要划分区域的大小。这个对应关系可以参考上面表格里面 cell 的宽和高。一旦选定 cell 的宽和高,那么 Geohash 字符串的长度就确定下来了。这样我们就把地图分成了一个个的矩形区域了。

    地图上虽然把区域划分好了,但是还有一个问题没有解决,那就是如何快速的查找一个点附近邻近的点和区域呢?

    Geohash 有一个和 Z 阶曲线相关的性质,那就是一个点附近的地方(但不绝对) hash 字符串总是有公共前缀,并且公共前缀的长度越长,这两个点距离越近。

    由于这个特性,Geohash 就常常被用来作为唯一标识符。用在数据库里面可用 Geohash 来表示一个点。Geohash 这个公共前缀的特性就可以用来快速的进行邻近点的搜索。越接近的点通常和目标点的 Geohash 字符串公共前缀越长(但是这不一定,也有特殊情况,下面举例会说明)

3.Geohash 编码形式——base 32 和 base 36

①base 32 (十进制与字符对应关系)

②base 36

    base 36 的版本对大小写敏感,用了36个字符,“23456789bBCdDFgGhHjJKlLMnNPqQrRtTVWX”。

二、Geohash 实际应用举例

    以 base-32 为例。举个例子。假设需要查询距离美罗城最近的餐馆,该如何查询?

1.地图网格化编码规则

    利用 geohash。通过查表,我们选取字符串长度为6的矩形来网格化这张地图。经过查询,美罗城的经纬度是[31.1932993, 121.43960190000007]。

①将经纬度转换为二进制

    先处理纬度。地球的纬度区间是[-90,90]。把这个区间分为2部分,即[-90,0),[0,90]。31.1932993位于(0,90]区间,即右区间,标记为1。然后继续把(0,90]区间二分,分为[0,45),[45,90],31.1932993位于[0,45)区间,即左区间,标记为0。一直划分下去。

再处理经度,一样的处理方式。地球经度区间是[-180,180]

②将经纬度的二进制编码合并

    纬度产生的二进制是101011000101110,经度产生的二进制是110101100101101,按照偶数位放经度,奇数位放纬度的规则,重新组合经度和纬度的二进制串,生成新的:111001100111100000110011110110

③将合并后的二进制数做Base32编码

    最后一步就是把这个最终的字符串转换成字符,对应需要查找 base-32 的表。11100 11001 11100 00011 00111 10110转换成十进制是 28 25 28 3 7 22,查表编码得到最终结果,wtw37q。

我们还可以把这个网格周围8个各自都计算出来。

从地图上可以看出,这邻近的9个格子,前缀都完全一致。都是wtw37。可以看到中间大格子的 Geohash 的值是 wtw37q,那么它里面的所有小格子前缀都是 wtw37q。可以想象,当 Geohash 字符串长度为5的时候,Geohash 肯定就为 wtw37 了。

位于格子边界两侧的两点,虽然十分接近,但编码会完全不同。实际应用中,可以同时搜索当前格子周围的8个格子,即可解决这个问题。

2.Geohash和Z曲线的关系

    x 轴就是纬度,y轴就是经度。经度放偶数位,纬度放奇数位就是这样而来的。

3.精度问题

    如果递归的次数越大,则生成的二进制编码越长,因此生成的geohash编码越长,位置越精确。

4.Geohash的意义

    GeoHash用一个字符串表示经度和纬度两个坐标, 比直接用经纬度的高效很多,而且使用者可以发布地址编码,既能表明自己位于某位置附近,又不至于暴露自己的精确坐标,有助于隐私保护。

    编码过程中,通过二分范围匹配的方式来决定某个经纬坐标是编码为1还是0,因此某些邻近坐标的编码是相同的,因此GeoHash表示的并不是一个点,而是一个矩形区域。GeoHash编码的前缀可以表示更大的区域。例如wm3vzg,它的前缀wm3vz表示包含编码wm3vzg在内的更大范围。这个特性可以用于附近地点搜索。

    如果把某个区域或整个地图上的地理位置都按照Geohash编码,则会得到一个网格,编码递归粒度越细,网格的矩形区域越小,geohash编码的长度越大,则Geohash编码越精确。

5.邻近网格位置推算

    根据Geohash的编码规则将经纬度分解到二进制,结合地理常识,中心网格在南北(上下)方向上体现为纬度的变化,往北则维度的二进制加1,往南则维度的二进制减1,在东西(左右)方向上体现为经度的变化,往东则经度的二进制加1,往西则减1,可以计算出上下左右四个网格经纬度的二进制编码,再将加减得出的经纬度两两组合,计算出左上、左下、右上和右下四个网格的经纬度二进制编码,从而就可以根据Geohash的编码规则计算出周围八个网格的字符串。

三、Geohash 的优缺点

    Geohash 的优点很明显,它利用 Z 阶曲线进行编码。而 Z 阶曲线可以将二维或者多维空间里的所有点都转换成一维曲线。在数学上成为分形维。并且 Z 阶曲线还具有局部保序性。

    Z 阶曲线通过交织点的坐标值的二进制表示来简单地计算多维度中的点的z值。一旦将数据被加到该排序中,任何一维数据结构,例如二叉搜索树,B树,跳跃表或(具有低有效位被截断)哈希表 都可以用来处理数据。通过 Z 阶曲线所得到的顺序可以等同地被描述为从四叉树的深度优先遍历得到的顺序。

这也是 Geohash 的另外一个优点,搜索查找邻近点比较快。

Geohash 的缺点之一也来自 Z 阶曲线。Z 阶曲线有一个比较严重的问题,虽然有局部保序性,但是它也有突变性。在每个 Z 字母的拐角,都有可能出现顺序的突变。

    看上图中标注出来的蓝色的点点。每两个点虽然是相邻的,但是距离相隔很远。看右下角的图,两个数值邻近红色的点两者距离几乎达到了整个正方形的边长。两个数值邻近绿色的点也达到了正方形的一半的长度。

Geohash 的另外一个缺点是,如果选择不好合适的网格大小,判断邻近点可能会比较麻烦。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/230824.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

书籍推荐: 深入理解Go并发编程

一书在手,并发无忧 收到了鸟窝老师历时五载写就的新作「深入理解Go并发编程」 迫不及待开卷阅览,大呼过瘾,最大感触是诚如副标题所言,“从原理到实践,看这本就够了”。 对并发编程优雅简洁的支持,是Go最大的…

从简单到入门,一文掌握jvm底层知识文集。

🏆作者简介,普修罗双战士,一直追求不断学习和成长,在技术的道路上持续探索和实践。 🏆多年互联网行业从业经验,历任核心研发工程师,项目技术负责人。 🎉欢迎 👍点赞✍评论…

关于我自己搭建了一个完整的 网站 - 从零开始(服务器购买选型,域名备案,wordpress 主题,各种支付插件)

这篇博客主要介绍是如何在华为云上搭建一个 WordPress 网站。我将详细介绍从购买服务器到推广网站的整个过程,包括域名主机的备案。无论您是技术新手还是有一定经验的开发者,这篇文章都能为您提供有价值的指导。 第一步:选择云服务器 我选择…

CART算法Python实现

本文深入探讨了CART(分类与回归树)算法的核心原理、实现方法以及应用场景。文章首先介绍了决策树的基础知识,然后详细解析了CART算法的工作机制,包括特征选择和树的构建。接着,通过Python和PyTorch的实例代码展示了CAR…

期末速成数据库极简版【存储过程】(5)

目录 【7】系统存储过程 【8】用户存储过程——带输出参数的存储过程 创建存储过程 存储过程调用 【9】用户存储过程——不带输出参数的存储过程 【7】系统存储过程 系统存储我们就不做过程讲解用户存储过程会考察一道大题,所以我们把重点放在用户存储过程。…

老年女性认知功能低于男性 |CHARLS CLHLS CFPS公共数据库周报(11.29)

欢迎参加郑老师2023年孟德尔随机化课程即将开始 发表文章后退款!郑老师科研统计课程详情 CHARLS公共数据库 CHARLS数据库简介中国健康与养老追踪调查(China Health and Retirement LongitudinalStudy,CHARLS)是一项持续的纵向调查,旨在调查中…

Java设计模式-工厂模式

目录 一、简单工厂模式 (一)需求 (二)使用传统的方法来完成 (三)传统方法的优缺点 (四)基本介绍 (五)使用简单工厂模式 二、工厂方法模式 &#xff0…

基于 ESP32-S3 的 Walter 开发板

Walter 是一款基于 ESP32-S3 且拥有 5G LTE 连接功能的新型开源开发套件。 近日,比利时公司 DPTechnics BV 推出了一款基于乐鑫 ESP32-S3 且拥有 5G LTE 连接功能的新型开源开发套件。该套件即将在 Crowd Supply 平台上发布,您可以点击此处了解详情。 无…

vm虚拟机固定IP

最近使用vm虚拟机 ,可用了一段时间ip就自动变化,于是去网上看了不少教程,但很多都没用。 1.编辑配置 vim /etc/sysconfig/network-scripts/ifcfg-ens33 修改BOOTPROTO为static加入属性IPADDR,设置你想要设置的ip配置GATEWAY与DNS1 不配置GA…

《每天一个Linux命令》 -- (5)通过sshkey密钥登录服务器

欢迎阅读《每天一个Linux命令》系列!在本篇文章中,将介绍通过密钥生成,使用公钥连接管理服务器。 概念 SSH 密钥是用于安全地访问远程服务器的一种方法。SSH 密钥由一对密钥组成:公钥和私钥。公钥存储在远程服务器上,…

Vue 2.0源码分析-update

Vue 的 _update 是实例的一个私有方法,它被调用的时机有 2 个,一个是首次渲染,一个是数据更新的时候;由于我们这一章节只分析首次渲染部分,数据更新部分会在之后分析响应式原理的时候涉及。_update 方法的作用是把 VNo…

23种策略模式之策略模式

文章目录 前言优缺点使用场景角色定义UML模拟示例小结 前言 在软件开发中,设计模式是为了解决常见问题而提供的一套可重用的解决方案。策略模式(Strategy Pattern)是其中一种常见的设计模式,它属于行为型模式。该模式的核心思想是…

【数据库】数据库多种锁模式,共享锁、排它锁,更新锁,增量锁,死锁消除与性能优化

多种锁模式的封锁系统 ​专栏内容: 手写数据库toadb 本专栏主要介绍如何从零开发,开发的步骤,以及开发过程中的涉及的原理,遇到的问题等,让大家能跟上并且可以一起开发,让每个需要的人成为参与者。 本专栏会…

RedisTemplate操作哈希数据

RedisTemplate操作哈希数据 概述常用方法添加哈希数据添加hashMap值判断hashkey 获取哈希数据获取属性值获取hashMap值。获取键值对。获取map键是否有值判断是否有map键。获取键。获取长度。集合方式获取值。匹配获取键值对 自增以double值大小自增。以long值大小自增。 修改删…

流程画布开发技术方案归档(G6)

🎨 在理想的最美好世界中,一切都是为最美好的目的而设。 —— 伏尔泰 如果可以实现记得点赞分享,谢谢老铁~ 一、技术选型 •从可维护性和可拓展性出发 •基本满足 1:链接: https://github.com/hukaibaihu/vue-org…

伦茨科技宣布ST17H6x芯片已通过Apple Find My「查找」认证

深圳市伦茨科技有限公司(以下简称“伦茨科技”)发布ST17H6x Soc平台。成为继Nordic之后全球第二家取得Apple Find My「查找」认证的芯片厂家,该平台提供可通过Apple Find My认证的Apple查找(Find My)功能集成解决方案。…

MPEG4Extractor

1、readMetaData 必须要找到 Moov box,找到 Mdat box或者 Moof box,并且创建了 ItemTable 大端 box 分为 box header 和 box content: box header由8个字节组成,前面四个字节表示这个box 的大小(包含这个头的8字节&a…

MySQL数据库,子查询

子查询指一个查询语句嵌套在另一个查询语句内部的查询。很多时候查询需要从结果集中获取数据,或者需要从同一个表中先计算得出一个数据结果,然后与这个数据结果(可能是某个标量,也可能是某个集合)进行比较。 例&#…

微信小程序适配方案:rpx(responsive pixel响应式像素单位)

小程序适配单位:rpx 规定任何屏幕下宽度为750rpx 小程序会根据屏幕的宽度自动计算rpx值的大小 Iphone6下:1rpx 1物理像素 0.5css 小程序编译后,rpx会做一次px换算,换算是以375个物理像素为基准,也就是在一个宽度…

通用基础模型+提示词是否能胜过微调模型?医学案例研究

论文链接在末尾 摘要 通用基础模型,如GPT-4,在各种领域和任务中展现出令人惊讶的能力。然而,普遍存在这样一种假设,即它们在没有专业知识深度训练的情况下无法达到专业能力。例如,迄今为止对医学竞赛基准的大多数探索都利用了领域特定的训练,正如在BioGPT和Med-PaLM等项…