Dexie 查询sql速度优化

Dexie查询速度慢的原因主要一个优化点是复杂查询下的count执行。
以下摘自Dexie官方文档:https://dexie.org/docs/Collection/Collection.count()

If executed on simple queries, the native IndexedDB ObjectStore
count() method will be called (fast execution). If advanced queries
are used, the implementation has to execute a query to iterate all
items and count them manually. Examples where count() will be fast

db.[table].where(index).equals(value).count()
db.[table].where(index).above(value).count()
db.[table].where(index).below(value).count()
db.[table].where(index).between(a,b).count()
db.[table].where(index).startsWith(value).count() 


// The reason it is fast in above samples is that they map to basic
// IDBKeyRange methods only(), lowerBound(), upperBound(), and bound().

// Examples where count() will have to count manually:
db.[table].where(index).equalsIgnoreCase(value).count()
db.[table].where(index).startsWithIgnoreCase(value).count()
db.[table].where(index).anyOf(valueArray).count()
db.[table].where(index).above(value).and(filterFunction).count()
db.[table].where(index1).above(value1).or(index2).below(value2).count()

官方文档中也说明了count在复杂查询的情况下统计速度会变慢,至于会变慢多少呢?个人做过对比在5000条数据量的情况下,进行统计大概需要花费3秒左右,而进行同样的查询只需要几十毫秒。
因此在使用Dexie进行复杂查询且需要进行分页操作时,应该避免进行重复的count操作。其中一个解决办法就是加入筛选条件的缓存,当缓存的条件不变时不进行count操作而直接使用之前count出来的数据。
例如:
项目中的一个例子
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

项目背景:electron + node + ng-zorro的一个项目。项目需要离线处理大量的数据,没办法加后端,只能在纯前端的项目里进行数据的加载、存储、查询等,且这个项目还要支持数据的筛选、分页。在这种情况下若直接使用Dexie进行count查询总数后再进行分页查询就会导致每次的查询都非常的慢。因此使用了缓存,每次在筛选的时候判断筛选条件是否发送变化,若发生了变化则重新进行count,若没有变化则视为进行翻页操作,仍使用之前的count。这样就只会在第一次用搜索条件进行查询的时候出现卡顿,其余时间较为流畅。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/230125.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

PPT插件-好用的插件-字距快速设置-大珩助手

字距快速设置 包含两端对齐、段首缩进、取消缩进、字间距、行间距、段后距 段首缩进 每次缩进两个字符,可对选中的文字、选中的多个文本对象两个层级操作 取消缩进 将缩进取消,可对选中的文字、选中的多个文本对象两个层级操作 字间距 预设了常用…

网页设计--第6次课后作业

试用Vue相关指令完成对以下json数据的显示。显示效果如下: 其中:gender1 显示为女,gender2显示为男。价格超过30元,显示“有点小贵”。价格少于等于30元,则显示“价格亲民”。 data: {books: [{"id": "…

【软件安装】VMware安装Centos7虚拟机并且设置静态IP,实现Windows和Centos7网络互相访问

这篇文章,主要介绍VMware安装Centos7虚拟机并且设置静态IP,实现Windows和Centos7网络互相访问。 目录 一、VMware安装Centos7 1.1、下载Centos7镜像 1.2、安装Centos7系统 二、设置静态IP地址 2.1、查看虚拟机网络IP 2.2、禁用NetworkManager服务 …

PandoraFMS 监控软件 SQL注入漏洞复现

0x01 产品简介 Pandora FMS是西班牙Artica公司的一套监控系统。该系统通过可视化的方式监控网络、服务器、虚拟基础架构和应用程序等。 0x02 漏洞概述 Pandora FMS监控软件存在SQL注入漏洞,攻击者通过chart_generator.php 来执行恶意语句,获取数据库敏感信息。 0x03 复现…

机器学习之全面了解回归学习器

我们将和大家一起探讨机器学习与数据科学的主题。 本文主要讨论大家针对回归学习器提出的问题。我将概要介绍,然后探讨以下五个问题: 1. 能否将回归学习器用于时序数据? 2. 该如何缩短训练时间? 3. 该如何解释不同模型的结果和…

拦截 open调用 (进程白名单,文件白名单)

拦截 open 文章目录 拦截 open第一个需求文件结构进程白名单文件白名单 测试代码第一个版本版本二代码演示 增加一个日志记录代码解释 gcc -shared -fPIC -o libintercept.so intercept.c -ldlLD_PRELOAD./libintercept.so ./processA在Linux中,我们可以使用LD_PREL…

RT-DETR优化:Backbone改进 | UniRepLKNet,通用感知大内核卷积网络,RepLK改进版本 | 2023.11

🚀🚀🚀本文改进: UniRepLKNet,通用感知大内核卷积网络,ImageNet-22K预训练,精度和速度SOTA,ImageNet达到88%, COCO达到56.4 box AP,ADE20K达到55.6 mIoU 🚀🚀🚀RT-DETR改进创新专栏:http://t.csdnimg.cn/vuQTz 学姐带你学习YOLOv8,从入门到创新,轻轻松松…

无人机高空巡查+智能视频监控技术,打造森林防火智慧方案

随着冬季的到来,森林防火的警钟再次敲响,由于森林面积广袤,地形复杂,且人员稀少,一旦发生火灾,人员无法及时发现,稍有疏忽就会酿成不可挽救的大祸。无人机高空巡查智能视频监控是一种非常有效的…

库卡LBR_iisy_3_R760协作机器人导入到coppeliasim

1.从库卡官网xpert下载模型 一般载都是这个step文件格式,其他的好像不太好用。coppeliasim导入格式用的是stl,需要用freeCAD打开重新转换一下。下载下来后,很多都是一个整体,在freeCAD导入中,导入选择要不勾选合并。 下载完用CAD …

Day54力扣打卡

打卡记录 出租车的最大盈利(动态规划) 链接 class Solution:def maxTaxiEarnings(self, n: int, rides: List[List[int]]) -> int:d defaultdict(list)for start, end, w in rides:d[end].append((start, end - start w))f [0] * (n 1)for i in…

linux进入emergency mode

问题描述 linux系统进入emergency mode模式 解决方法 查看问题原因 journalctl -xb -p3 使用fsck 不一定是sda2,也可能是其他,我的是/dev/sda6,然后接受所有的option,完毕后重启电脑 fsck /dev/sda2接受所有的选项&#xff…

华为配置Smart Link主备备份示例

定义 Smart Link,又叫做备份链路。一个Smart Link由两个接口组成,其中一个接口作为另一个的备份。Smart Link常用于双上行组网,提供可靠高效的备份和快速的切换机制。 Monitor Link是一种接口联动方案,它通过监控设备的上行接口…

Leetcode—2646.最小化旅行的价格总和【困难】

2023每日刷题&#xff08;五十三&#xff09; Leetcode—2646.最小化旅行的价格总和 算法思想 看灵神的 实现代码 class Solution { public:int minimumTotalPrice(int n, vector<vector<int>>& edges, vector<int>& price, vector<vector&l…

Spring Boot 整合 xxl-job 保姆级教程!

文章目录 介绍使用初始化“调度数据库”配置调度中心配置“执行器项目”调度任务 介绍 首先我们介绍一下什么是xxl-job&#xff0c;根据官方定义&#xff0c;XXL-JOB是一个分布式任务调度平台&#xff0c;其核心设计目标是开发迅速、学习简单、轻量级、易扩展。现已开放源代码…

快速学会绘制Pyqt5中的所有图(下)

Pyqt5相关文章: 快速掌握Pyqt5的三种主窗口 快速掌握Pyqt5的2种弹簧 快速掌握Pyqt5的5种布局 快速弄懂Pyqt5的5种项目视图&#xff08;Item View&#xff09; 快速弄懂Pyqt5的4种项目部件&#xff08;Item Widget&#xff09; 快速掌握Pyqt5的6种按钮 快速掌握Pyqt5的10种容器&…

【Go自学版】02-goroutine

利用时间片分割进程&#xff0c;致使宏观上A,B,C同时执行&#xff08;并发&#xff09; CPU利用率包含了执行和切换&#xff0c;进程/线程的数量越多&#xff0c;切换成本也会增大 最大并行数&#xff1a;GOMAXPROCS work stealing: 偷其他队列的G hand off: 当前G1阻塞&#…

【Pytorch】Fizz Buzz

文章目录 1 数据编码2 网络搭建3 网络配置&#xff0c;训练4 结果预测5 翻车现场 学习参考来自&#xff1a; Fizz Buzz in Tensorflowhttps://github.com/wmn7/ML_Practice/tree/master/2019_06_10Fizz Buzz in Pytorch I need you to print the numbers from 1 to 100, excep…

数字化转型怎么才能做成功?_光点科技

数字化转型对于现代企业来说是一场必要的革命。它不仅仅是技术的更迭&#xff0c;更是企业战略、文化和运营方式全面升级的体现。一个成功的数字化转型能够使企业更具竞争力、更灵活应对市场变化&#xff0c;并最终实现业务增长和效率提升。那么&#xff0c;数字化转型怎么才能…

JVM常见垃圾回收器

串行垃圾回收器 Serial和Serial Old串行垃圾回收器&#xff0c;是指使用单线程进行垃圾回收&#xff0c;堆内存较小&#xff0c;适合个人电脑 Serial作用于新生代&#xff0c;采用复制算法 Serial Old作用于老年代&#xff0c;采用标记-整理算法 垃圾回收时&#xff0c;只有…

Navicat 技术指引 | 适用于 GaussDB 分布式的数据生成功能

Navicat Premium&#xff08;16.3.3 Windows 版或以上&#xff09;正式支持 GaussDB 分布式数据库。GaussDB 分布式模式更适合对系统可用性和数据处理能力要求较高的场景。Navicat 工具不仅提供可视化数据查看和编辑功能&#xff0c;还提供强大的高阶功能&#xff08;如模型、结…