MIT线性代数笔记-第26讲-对称矩阵及正定性

目录

  • 26.对称矩阵及正定性
    • 打赏

26.对称矩阵及正定性

  1. 实对称矩阵的特征值均为实数,并且一定存在一组两两正交的特征向量

    这对于单位矩阵显然成立

    证明特征值均为实数:

    ​    设一个对称矩阵 A A A,对于 A x ⃗ = λ x ⃗ A \vec{x} = \lambda \vec{x} Ax =λx ,依第 21 21 21讲的小技巧可知 A x ⃗ ‾ = λ ‾ x ⃗ ‾ A \overline{\vec{x}} = \overline{\lambda} \overline{\vec{x}} Ax =λx

    ​    左右一起转置可得 x ⃗ ‾ T A T = λ ‾ x ⃗ ‾ T \overline{\vec{x}}^T A^T = \overline{\lambda} \overline{\vec{x}}^T x TAT=λx T,利用对称性可得 x ⃗ ‾ T A = λ ‾ x ⃗ ‾ T \overline{\vec{x}}^T A = \overline{\lambda} \overline{\vec{x}}^T x TA=λx T,左右一起左乘 x ⃗ \vec{x} x 可得 x ⃗ ‾ T A x ⃗ = λ ‾ x ⃗ ‾ T x ⃗ \overline{\vec{x}}^T A \vec{x} = \overline{\lambda} \overline{\vec{x}}^T \vec{x} x TAx =λx Tx

    ​    而最初的等式左右一起右乘 x ⃗ ‾ T \overline{\vec{x}}^T x T可得 x ⃗ ‾ T A x ⃗ = λ x ⃗ ‾ T x ⃗ \overline{\vec{x}}^T A \vec{x} = \lambda \overline{\vec{x}}^T \vec{x} x TAx =λx Tx

    ​    所以 λ ‾ x ⃗ ‾ T x ⃗ = λ x ⃗ ‾ T x ⃗ \overline{\lambda} \overline{\vec{x}}^T \vec{x} = \lambda \overline{\vec{x}}^T \vec{x} λx Tx =λx Tx ,因而若 x ⃗ ‾ T x ⃗ ≠ 0 \overline{\vec{x}}^T \vec{x} \ne 0 x Tx =0,则 λ \lambda λ为实数

    ​    下证 x ⃗ ‾ T x ⃗ ≠ 0 \overline{\vec{x}}^T \vec{x} \ne 0 x Tx =0

    ​    对于任意复数 x = a + b i x = a + bi x=a+bi,有 x ‾ x = ( a − b i ) ( a + b i ) = a 2 + b 2 = ∣ x ∣ 2 \overline{x} x = (a - bi)(a + bi) = a^2 + b^2 = |x|^2 xx=(abi)(a+bi)=a2+b2=x2

    ​    所以 x ⃗ ‾ T x ⃗ = [ x 1 ‾ x 2 ‾ ⋯ x n ‾ ] [ x 1 x 2 ⋮ x n ] = ∣ x 1 ∣ 2 + ∣ x 2 ∣ 2 + ⋯ + ∣ x n ∣ 2 = x ⃗ 2 \overline{\vec{x}}^T \vec{x} = \begin{bmatrix} \overline{x_1} & \overline{x_2} & \cdots & \overline{x_n} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = |x_1|^2 + |x_2|^2 + \cdots + |x_n|^2 = \vec{x}^2 x Tx =[x1x2xn] x1x2xn =x12+x22++xn2=x 2

    ​    又特征向量不可能是 0 ⃗ \vec{0} 0 ,所以 x ⃗ ‾ T x ⃗ > 0 \overline{\vec{x}}^T \vec{x} > 0 x Tx >0,因而 λ \lambda λ为实数

    证明一定存在一组两两正交的特征向量:

    暂时不会证明 \color{OrangeRed}暂时不会证明 暂时不会证明

    • 可以注意到证明中关键的条件是 A = A ‾ A = \overline{A} A=A,但是对于复矩阵,如果 A = A ‾ T A = \overline{A}^T A=AT,那么 x ⃗ ‾ T A = λ ‾ x ⃗ ‾ T \overline{\vec{x}}^T A = \overline{\lambda} \overline{\vec{x}}^T x TA=λx T仍成立,特征值仍一定为实数且一定存在一组两两正交的特征向量,这样的复矩阵称为共轭对称矩阵
  2. 当挑选出的那些特征向量为一组标准正交基时,对称矩阵 A = S Λ S − 1 = Q Λ Q − 1 = Q Λ Q T A = S \Lambda S^{-1} = Q \Lambda Q^{-1} = Q \Lambda Q^T A=SΛS1=QΛQ1=QΛQT

    这种分解展示了对称矩阵的对称性,即 ( Q Λ Q T ) T = ( Q T ) T Λ T Q T = Q Λ Q T (Q \Lambda Q^T)^T = (Q^T)^T \Lambda^T Q^T = Q \Lambda Q^T (QΛQT)T=(QT)TΛTQT=QΛQT,它在数学上称为谱定理,在力学上称为主轴定理

    进一步推导有

    A = Q Λ Q T = [ ∣ ⋯ ∣ q ⃗ 1 ⋯ q ⃗ n ∣ ⋯ ∣ ] [ λ 1 ⋯ 0 ⋮ ⋱ ⋮ 0 ⋯ λ n ] [ − q ⃗ 1 T − ⋯ ⋯ ⋯ − q ⃗ n T − ] = λ 1 q ⃗ 1 q ⃗ 1 T + λ 2 q ⃗ 2 q ⃗ 2 T + ⋯ + λ n q ⃗ n q ⃗ n T A = Q \Lambda Q^T = \begin{bmatrix} | & \cdots & | \\ \vec{q}_1 & \cdots & \vec{q}_n \\ | & \cdots & | \end{bmatrix} \begin{bmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{bmatrix} \begin{bmatrix} - & \vec{q}_1^{T} & - \\ \cdots & \cdots & \cdots \\ - & \vec{q}_n^{T} & - \end{bmatrix} = \lambda_1 \vec{q}_1 \vec{q}_1^T + \lambda_2 \vec{q}_2 \vec{q}_2^T + \cdots + \lambda_n \vec{q}_n \vec{q}_n^T A=QΛQT= q 1q n λ100λn q 1Tq nT =λ1q 1q 1T+λ2q 2q 2T++λnq nq nT

    因为 q ⃗ 1 , q ⃗ 2 , ⋯   , q ⃗ n \vec{q}_1 , \vec{q}_2 , \cdots , \vec{q}_n q 1,q 2,,q n为单位向量,所以 q ⃗ 1 T q ⃗ 1 = ⋯ = q ⃗ n T q ⃗ n = 1 \vec{q}_1^T \vec{q}_1 = \cdots = \vec{q}_n^T \vec{q}_n = 1 q 1Tq 1==q nTq n=1,所以 q ⃗ 1 q ⃗ 1 T = q ⃗ 1 q ⃗ 1 T q ⃗ 1 T q ⃗ 1 , ⋯   , q ⃗ n q ⃗ n T = q ⃗ n q ⃗ n T q ⃗ n T q ⃗ n \vec{q}_1 \vec{q}_1^T = \dfrac{\vec{q}_1 \vec{q}_1^T}{\vec{q}_1^T \vec{q}_1} , \cdots , \vec{q}_n \vec{q}_n^T = \dfrac{\vec{q}_n \vec{q}_n^T}{\vec{q}_n^T \vec{q}_n} q 1q 1T=q 1Tq 1q 1q 1T,,q nq nT=q nTq nq nq nT,这样就把 q ⃗ 1 q ⃗ 1 T , ⋯   , q ⃗ n q ⃗ n T \vec{q}_1 \vec{q}_1^T , \cdots , \vec{q}_n \vec{q}_n^T q 1q 1T,,q nq nT看成了 q ⃗ 1 , q ⃗ 2 , ⋯   , q ⃗ n \vec{q}_1 , \vec{q}_2 , \cdots , \vec{q}_n q 1,q 2,,q n的投影矩阵,因而对称矩阵可以视为一些向量的投影矩阵的组合,这是人们理解谱定理的另一种办法

  3. 对称矩阵的主元中正负数个数分别与其特征值中正负数的个数一致

    证明: 暂时不会证明 \color{OrangeRed}暂时不会证明 暂时不会证明

    由此可以得到一种新的计算特征值的办法,对于对称矩阵 A A A,可以得到 A − n I A - nI AnI的主元中正负数分别有多少,从而分别知道 A A A有多少个特征值大于、小于 n n n,这样就可以把特征值逼到一定的精度内

  4. 正定矩阵

    正定矩阵:一个实对称矩阵 M M M,对于任意实非零向量 x ⃗ \vec{x} x 均满足 x ⃗ T M x ⃗ > 0 \vec{x}^T M \vec{x} > 0 x TMx >0,那么 M M M为正定矩阵

    • 正定矩阵的特征值和主元均为正实数

      证明: 见第 28 28 28

      • 正定矩阵的行列式也为正实数
    • 正定矩阵的所有子行列式均为正实数

      其中子行列式表示以该正定矩阵的第一个元素为第一个元素的子方阵的行列式

      证明: 暂时不会证明 \color{OrangeRed}暂时不会证明 暂时不会证明


打赏

制作不易,若有帮助,欢迎打赏!
赞赏码

支付宝付款码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/229466.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

基于YOLOv7算法和Caltech数据集的高精度行人目标检测识别系统(PyTorch+Pyside6+YOLOv7)

摘要:基于YOLOv7算法和Caltech数据集的高精度行人目标检测系统可用于日常生活中检测与定位行人目标,此系统可完成对输入图片、视频、文件夹以及摄像头方式的目标检测与识别,同时本系统还支持检测结果可视化与导出。本系统采用YOLOv7目标检测算…

python核心阶段(五)—— 面向对象三大特性

1.封装 概念:封装主要是指将一些属性和相关方法封装在一个对象中,对外隐藏内部具体实现细节 作用:1)使用起来更加方便,类似于提供了一个工具箱 2)保证数据的安全(设置私有属性) 3&am…

python3.5安装教程及环境配置,python3.7.2安装与配置

大家好,小编来为大家解答以下问题,python3.5安装教程及环境配置,python3.7.2安装与配置,现在让我们一起来看看吧! python 从爬虫开始(一) Python 简介 首先简介一下Python和爬虫的关系与概念&am…

MagicAnimate

简介 新加坡国立大学 Show 实验室和字节联合做了一项类似的研究。他们提出了一个基于扩散的框架 MagicAnimate,旨在增强时间一致性、忠实地保留参考图像并提升动画保真度。并且,MagicAnimate 项目是开源的,目前推理代码和 gradio 在线 demo …

好莱坞明星识别

一、前期工作 1. 设置GPU from tensorflow import keras from tensorflow.keras import layers,models import os, PIL, pathlib import matplotlib.pyplot as plt import tensorflow as tfgpus tf.config.list_physical_devices("GPU")if gpus:gpu0 …

MySQL数据备份

一、逻辑备份 备份的是建表、建库、插入等操作所执行SQL语句,适用于中小型数据库,效率相对较低。 本质:导出的是SQL语句文件 优点:不论是什么存储引擎,都可以用mysqldump备成SQL语句 缺点:速度较慢&…

周星驰 互联网3.0 团队下个月将上线独立 App

2023年12月7日,新浪科技报道指出,周星驰旗下的互联网3.0团队透露,Moonbox,这家周星驰创立的互联网3.0初创公司,计划在明年1月份完成Moonbox App的上线,届时该应用将免费向用户提供服务。 目前,…

外包干了三年,我承认我确实废了……

没错,我也干过外包,一干就是三年,三年后,我废了…… 虽说废的不是很彻底,但那三年我几乎是出差了三年、玩了三年、荒废了三年,那三年,我的技术能力几乎是零成长的。 说起这段三年的外包经历&a…

git 克隆无权限-重新输入账号密码

克隆项目代码时提示没有权限,有可能是没有登录账号,也可能是账号密码改了,运行下面指令,然后重新克隆项目,下载的时候会让你重新输入账号密码,则克隆成功 git config --global credential.helper cache 参考…

043:vue项目一直出现 sockjs-node/info?t=XX的解决办法

第043个 查看专栏目录: VUE ------ element UI 专栏目标 在vue和element UI联合技术栈的操控下,本专栏提供行之有效的源代码示例和信息点介绍,做到灵活运用。 (1)提供vue2的一些基本操作:安装、引用,模板使…

Spark大数据集群日常开发过程遇到的异常及解决思路汇总

原创/朱季谦 在开发Spark任务过程中,遇到过不少新人经常可能会遇到的坑,故而将这些坑都总结了下来,方便日后遇到时,可以快速定位解决,壁面耗费过多时间在查找问题之上。 一、出现java.lang.IllegalAccessError: tried…

AGM CPLD 应用指南

AGM的部分料号跟Altera 硬件Pin to Pin兼容,映射关系表如下: EPM240T100CxN—>AG256SL100(CPLD) EPM240T100IxN---->AG256SL100(CPLD) EPM570T100CxN—>AG576SL100(CPLD) EPM570T100IxN---->AG576SL100(CPLD) EPM570T144CxN—>AG576SL144…

机器人纯阻抗控制接触刚性环境

问题描述 在机器人学中,阻抗控制是一种常用的控制策略,用于管理机器人在与环境交互时的运动和力。阻抗控制背后的关键概念是将环境视为导纳,而将机器人视为阻抗。 纯阻抗控制接触刚性环境时,机器人的行为方式主要受其阻抗参数的…

虚拟化之指令的Trap和仿真

有时,虚拟机监控程序需要在虚拟机(VM)中模拟操作。例如,VM内的软件可能尝试配置与功耗管理或缓存一致性相关的低级处理器控件。通常,您不希望将VM直接访问这些控件,因为它们可能被用于突破隔离,或影响系统中的其他VM。 trap在执行给定操作(例如读取寄存器)时引发异常…

二分查找算法

文章目录 二分查找二分的实战讲解二分查找普通二分模版 在排序数组中查找元素的第一个和最后一个位置万能二分模版 总结 二分查找 什么是二分查找:就是定义左右2个指针(此指针非真指针)取中间值 通过一次次取中间值找到要找到的数 二分的实战讲解 二分查找 题目:地址 题目解析…

实现SQL server数据库完整性

1.创建一个数据库名为“erp” 主数据文件:初始容量为5MB,最大容量为50MB,递增量为1MB,其余参数自设。事务日志文件:初始容量为3MB,最大容量为20MB,递增量为10%,其余参数自设。 创建…

Linux下c开发

编程环境 Linux 下的 C 语言程序设计与在其他环境中的 C 程序设计一样, 主要涉及到编辑器、编译链接器、调试器及项目管理工具。编译流程 编辑器 Linux 中最常用的编辑器有 Vi。编译连接器 编译是指源代码转化生成可执行代码的过程。在 Linux 中,最常用…

WMMSE方法的使用笔记

标题很帅 原论文的描述WMMSE的简单应用 无线蜂窝通信系统的预编码设计问题中,经常提到用WMMSE方法设计多用户和速率最大化的预编码,其中最为关键的一步是将原和速率最大化问题转化为均方误差最小化问题,从而将问题由非凸变为关于三个新变量的…

Vue3实现一个拾色器功能

​ <template><div class"color"><button v-if"hasEyeDrop" click"nativePick">点击取色</button><input v-else type"color" input"nativePick" v-model"selectedColor" /><p&…

【学一点儿前端】真机调试本地公众号网页项目

前言 微信公众号网页开发的真机调试一直是很头疼的事情。 原因一 微信公众号配置的JS安全域名只有三个&#xff0c;一个大中型的公众号这三个JS安全域名都是生产的域名&#xff0c;不可能预留域名用于开发和调试。 原因二 在微信里面只有访问正确的安全域名才能调用wx.config用…