【思路代码详解】2023mathorcup大数据复赛B题妈妈杯高校数学建模挑战赛电商零售商家需求预测及库存优化问题

2023 年 MathorCup 高校数学建模挑战赛——大数据竞赛
赛道 B复赛:电商零售商家需求预测及库存优化问题

问题一
目标:制定补货计划,基于预测销量。
背景:固定库存盘点周期NRT=1, 提前期LT=3天。
初始条件:所有商品期初库存为5,持有成本及缺货成本与商品价格正相关。
策略:周期性盘点库存策略(s,S)。
数据处理:需结合历史及预测需求量。
任务:提供2023-05-16至2023-05-30期间的补货计划(每天的s和S值)。
目标指标:降低成本,提升服务水平,降低库存周转天数。
问题二
目标:撰写关于电商零售商家需求预测及库存优化问题的总结报告。
内容要求:报告中需要明确团队方案的优缺点。
附件说明
结果表4:库存补货结果表,包含商家编码、商品编码、仓库编码、日期、库存决策变量(s和S)、当天期初库存、当天期末库存、预测需求量和补货量等字段。

总结问题一团队认为可以采用的方法为:基于模拟退火求解规划问题;基于遗传算法求解规划问题;使用库存管理理论,如经济订货量(EOQ)模型;基于机器学习的预测模型;基于修正机器学习的预测模型
团队将选取至少3种方法分别进行求解。

mbd.pub/o/bread/mbd-ZZeckpxs

商品价格数据的Excel文件:
这个数据表包含了商品编号(product_no)和相应的价格(price)。

预测结果表,包含以下信息:
商家编号(seller_no)
商品编号(product_no)
仓库编号(warehouse_no)
日期范围(date),这里显示的是从2023-05-16至2023-05-30的日期范围
预测需求量(forecast_qty)
对原始数据做可视化:

在这里插入图片描述

预测需求量的分布:这个图表显示了预测需求量的分布情况。可以看到需求量的分布范围和集中趋势。
商品价格的分布:这个图表显示了商品价格的分布情况。通过这个图表,我们可以了解商品价格的波动和集中趋势。

在这里插入图片描述

每个商家的预测产品数量:这个图表显示了各个商家的预测产品数量。这有助于了解哪些商家的产品数量较多,可能需要更多关注。
每个仓库的产品数量:这个图表展示了每个仓库中的产品数量。这有助于分析不同仓库的库存分布情况。
最常见的商品价格(前10名):这个图表显示了最常见的商品价格及其出现频率。这可以帮助我们理解价格分布的重点区域。

在这里插入图片描述

价格分布图:这个直方图显示了商品价格的分布情况,并包含一个核密度估计(KDE)曲线,可以帮助理解价格的总体分布趋势。
价格箱线图:这个箱线图提供了商品价格的五数概括(最小值、第一四分位数、中位数、第三四分位数、最大值),以及可能的异常值。
价格密度图:这个密度图展示了价格的概率密度分布,可以帮助更详细地了解价格分布的形状。

补货模型的构建步骤

  1. 数据整合
    将商品价格数据与预测需求数据结合,以便在补货决策中考虑成本。
  2. 确定补货策略
    我们将采用周期性盘点库存策略(s, S)。
    根据商品的预测需求和价格确定每个商品的s和S值。
  3. 考虑库存成本
    考虑持有成本(基于商品价格和库存水平)和缺货成本(当需求不能被满足时)。
    目标是平衡成本和服务水平。
  4. 模型实现
    使用Python来实现这个模型。
    可以考虑使用库存管理理论,如经济订货量(EOQ)模型
    或者基于机器学习的预测模型。
    或者构建规划方程
  5. 模型测试与优化
    测试模型在不同参数下的表现。
    根据成本、库存水平和服务水平进行优化。
  6. 结果输出
    输出2023-05-16至2023-05-30期间的补货计划

结合了预测需求数据和商品价格来计算每个商品的补货点(s值)和目标库存水平(S值)。这里,s和S的计算基于简单的假设
需要考虑了持有成本和缺货成本,这些成本根据商品价格和设定的比率计算得出。
下一步
参数调整:根据具体需求和成本考虑,调整s和S的计算方法。
模型验证:测试模型以确保其准确性和有效性。
优化策略:可能需要进一步优化策略,以更好地适应实际情况。
#初步代码
import pandas as pd
import numpy as np

File paths

forecast_results_file_path = ‘结果表1-预测结果表.xlsx’
product_price_file_path = ‘商品价格数据.xlsx’

Load the forecast results data

forecast_results_data = pd.read_excel(forecast_results_file_path)

Load the product price data

product_price_data = pd.read_excel(product_price_file_path)

Constants and assumptions

initial_inventory = 5 # Initial inventory level for all products
lead_time = 3 # Lead time in days
review_period = 1 # Review period in days
holding_cost_rate = 0.01 # Holding cost rate (percentage of product price)
shortage_cost_rate = 0.02 # Shortage cost rate (percentage of product price)

Merging forecast data with price data

merged_data = forecast_results_data.merge(product_price_data, on=‘product_no’, how=‘left’)

Function to calculate s and S values for each product

def calculate_replenish_points(row):
forecast_demand = row[‘forecast_qty’]
price = row[‘price’]
holding_cost_per_unit = price * holding_cost_rate
shortage_cost_per_unit = price * shortage_cost_rate
return s, S

Apply the function to each row in the dataframe

merged_data[[‘s’, ‘S’]] = merged_data.apply(lambda row: calculate_replenish_points(row), axis=1, result_type=“expand”)

Display the updated dataframe

merged_data.head()

初步预测结果对可视化

在这里插入图片描述

预测数量分布图:这个直方图展示了预测数量的分布情况,并包含一个核密度估计(KDE)曲线,有助于理解预测数量的总体分布趋势。
预测数量箱线图:这个箱线图提供了预测数量的五数概括(最小值、第一四分位数、中位数、第三四分位数、最大值),以及可能的异常值。
预测数量密度图:这个密度图显示了预测数量的概率密度分布,可以更详细地了解预测数量分布的形状。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/228963.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

temu日本站在哪里入驻

在跨境电商领域中,Temu是拼多多推出的一款备受瞩目的平台。如今,越来越多的商家希望将自己的业务扩展到日本市场,而在Temu日本站上入驻就成为了一个不可忽视的机遇。本文将为您介绍如何在Temu日本站上入驻,并提供一些有用的技巧和…

excel做预测的方法集合

一. LINEST函数 首先,一元线性回归的方程: y a bx 相应的,多元线性回归方程式: y a b1x1 b2x2 … bnxn 这里: y - 因变量即预测值x - 自变量a - 截距b - 斜率 LINEST的可以返回回归方程的 截距(a) 和 斜…

Spring Boot实现接口幂等

Spring Boot实现接口幂等 1、pom依赖 <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0" xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation"http:…

记一次xss通杀挖掘历程

前言 前端时间&#xff0c;要开放一个端口&#xff0c;让我进行一次安全检测&#xff0c;发现的一个漏洞。 经过 访问之后发现是类似一个目录索引的端口。(这里上厚码了哈) 错误案例测试 乱输内容asdasffda之后看了一眼Burp的抓包&#xff0c;抓到的内容是可以发现这是一个…

12.08

1.头文件 #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include <QDebug>QT_BEGIN_NAMESPACE namespace Ui { class Widget; } QT_END_NAMESPACEclass Widget : public QWidget {Q_OBJECTpublic:Widget(QWidget *parent nullptr);~Widget(); signals:v…

2023五岳杯量子计算挑战赛数学建模思路+模型+代码+论文

赛题思路&#xff1a;12月6日晚开赛后第一时间更新&#xff0c;获取见文末名片 “五岳杯”量子计算挑战赛&#xff0c;是国内专业的量子计算大赛&#xff0c;也是玻色量子首次联合移动云、南方科技大学共同发起的一场“企校联名”的国际竞赛&#xff0c;旨在深度融合“量子计算…

正则表达式(7):转义符

正则表达式&#xff08;7&#xff09;&#xff1a;正则表达式&#xff08;5&#xff09;&#xff1a;转义符 本博文转载自 此处&#xff0c;我们来认识一个常用符号&#xff0c;它就是反斜杠 “\” 反斜杠有什么作用呢&#xff1f;先不着急解释&#xff0c;先来看个小例子。 …

TCP传输层详解(计算机网络复习)

介绍&#xff1a;TCP/IP包含了一系列的协议&#xff0c;也叫TCP/IP协议族&#xff0c;简称TCP/IP。该协议族提供了点对点的连接机制&#xff0c;并将传输数据帧的封装、寻址、传输、路由以及接收方式都予以标准化 TCP/IP的分层模型 在讲TCP/IP协议之前&#xff0c;首先介绍一…

Python列表的排序方法:从基础到高级

更多Python学习内容&#xff1a;ipengtao.com 大家好&#xff0c;我是彭涛&#xff0c;今天为大家分享 Python列表的排序方法&#xff1a;从基础到高级&#xff0c;全文3400字&#xff0c;阅读大约10分钟。 在Python中&#xff0c;列表是一种常用的数据结构&#xff0c;而对列表…

<习题集><LeetCode><链表><61/83/82/86/92>

61. 旋转链表 https://leetcode.cn/problems/rotate-list/ public ListNode rotateRight(ListNode head, int k) {//k等于0&#xff0c;或者head为空&#xff0c;直接返回head&#xff1b;if(k 0 || head null){return head;}//创建last用于记录尾节点&#xff0c;移动last找…

vue 使用 h函数

我的项目前端使用的vben-admin框架。现在有个需求需要在列表中显示一个自定义链接 先贴出做成功的效果如下图。 在做之前通过咨询和搜索得知 可以用vue的h函数来返回一个dom。 那我就去看vue官网对于h函数的说明和示例&#xff0c;大致浏览了一页&#xff0c;感觉还是有点迷糊…

实时动作识别学习笔记

目录 yowo v2 yowof 判断是在干什么,不能获取细节信息 yowo v2 https://github.com/yjh0410/YOWOv2/blob/master/README_CN.md ModelClipmAPFPSweightYOWOv2-Nano1612.640ckptYOWOv2-Tiny

SpringBoot系列之启动成功后执行业务的方法归纳

SpringBoot系列之启动成功后执行业务逻辑。在Springboot项目中经常会遇到需要在项目启动成功后&#xff0c;加一些业务逻辑的&#xff0c;比如缓存的预处理&#xff0c;配置参数的加载等等场景&#xff0c;下面给出一些常有的方法 实验环境 JDK 1.8SpringBoot 2.2.1Maven 3.2…

Gerber文件使用详解

目录 概述 一、Gerber 格式 二、接线图示例 三、顶层丝印 四、顶级阻焊层 五、顶部助焊层 六、顶部&#xff08;或顶部铜&#xff09; 七、钻头 八、电路板概要 九、使用文本和字体进行 Gerber 导出 十、总结 概述 Gerber文件:它们是什么? PCB制造商如何使用它们? …

C# 编程新手必看,一站式学习网站,让你轻松掌握 C# 技能!

介绍&#xff1a;实际上&#xff0c;您可能弄错了&#xff0c;C#并不是一种独立的编程语言&#xff0c;而是一种由微软公司开发的面向对象的、运行于.NET Framework之上的高级程序设计语言。C#看起来与Java十分相似&#xff0c;但两者并不兼容。 C#的设计目标是简单、强大、类型…

智能优化算法应用:基于战争策略算法无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于战争策略算法无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于战争策略算法无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.战争策略算法4.实验参数设定5.算法结果6.参考…

轻松操纵SQL:Druid解析器实践

一、背景 在BI&#xff08;Business Intelligence&#xff09;场景中&#xff0c;用户会频繁使用SQL查询语句&#xff0c;但在平台运作过程中&#xff0c;面临着权限管理、多数据源处理和表校验等多种挑战。 例如&#xff0c;用户可能不清楚自身是否具备对特定表&#xff08;…

极简模式,助力宏观数据监控

随着UWA GOT Online采样的参数越来越多样化&#xff0c;为了提升开发者的使用体验&#xff0c;我们最新推出了三种预设数据采集方案&#xff1a;极简模式、CPU模式、内存模式。该更新旨在降低多数据采集对数据准确性的干扰&#xff0c;同时也为大家提供更精准且有针对性的数据指…

15.Eclipse常用基本配置设置

在使用Eclipse进行Java开发之前&#xff0c;经常需要进行一些配置&#xff0c;其中有些配置甚至是必须的&#xff0c;即使开始不编辑之后开发过程中也会出一些因配置导致的小问题。本文梳理了一下Eclipse使用中常用的配置 1 编码配置 1.1 设置工作空间编码格式 打开Eclipse&…

甘草书店:#10 2023年11月24日 星期五 「麦田创业分享2—世界奇奇怪怪,请保持可可爱爱」

今日继续分享麦田创业经验。 如果你问我&#xff0c;创业过程中是否想过放弃。那么答案是&#xff0c;有那么一次。 那时想要放弃的原因并不是辛苦没有回报&#xff0c;或是资金短缺&#xff0c;而是没能理解“异见者”。 其实事情非常简单&#xff0c;现在反观那时的自己&a…