【数据结构(六)】排序算法介绍和算法的复杂度计算(1)

文章目录

  • 1. 排序算法的介绍
    • 1.1. 排序的分类
  • 2. 算法的时间复杂度
    • 2.1. 度量一个程序(算法)执行时间的两种方法
    • 2.2. 时间频度
      • 2.2.1. 忽略常数项
      • 2.2.2. 忽略低次项
      • 2.2.2. 忽略系数
    • 2.3. 时间复杂度
    • 2.4. 常见的时间复杂度
    • 2.5. 平均时间复杂度和最坏时间复杂度
  • 3. 算法的空间复杂度


1. 排序算法的介绍

排序也称排序算法(Sort Algorithm),排序是将一组数据,依指定的顺序进行排列的过程。

1.1. 排序的分类

  1. 内部排序:
    指将需要处理的所有数据都加载到**内部存储器(内存)**中进行排序。
  2. 外部排序法:
    数据量过大,无法全部加载到内存中,需要借助**外部存储(文件等)**进行排序。

常见的排序算法分类(见下图):

在这里插入图片描述

2. 算法的时间复杂度

2.1. 度量一个程序(算法)执行时间的两种方法

  1. 事后统计的方法
    这种方法可行, 但是有两个问题:
    一是要想对设计的算法的运行性能进行评测,需要实际运行该程序;
    二是所得时间的统计量依赖于计算机的硬件、软件等环境因素, 这种方式,要在同一台计算机的相同状态下运行,才能比较那个算法速度更快。

  2. 事前估算的方法
    通过分析某个算法的时间复杂度来判断哪个算法更优。

2.2. 时间频度

基本介绍:

时间频度:一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为 T ( n ) T(n) T(n)

举例说明-基本案例

比如计算 1-100 所有数字之和, 可设计两种算法:
在这里插入图片描述

2.2.1. 忽略常数项

在这里插入图片描述

结论:
2 n + 20 2n+20 2n+20 2 n 2n 2n 随着 n n n 变大,执行曲线无限接近, 20 20 20 可以忽略
3 n + 10 3n+10 3n+10 3 n 3n 3n 随着 n n n 变大,执行曲线无限接近, 10 10 10 可以忽略

2.2.2. 忽略低次项

在这里插入图片描述

结论:
2 n 2 + 3 n + 10 2n^2+3n+10 2n2+3n+10 2 n 2 2n^2 2n2 ,随着 n n n 变大, 执行曲线无限接近, 可以忽略 3 n + 10 3n+10 3n+10
n 2 + 5 n + 20 n^2+5n+20 n2+5n+20 n 2 n^2 n2 ,随着 n n n 变大,执行曲线无限接近, 可以忽略 5 n + 20 5n+20 5n+20

2.2.2. 忽略系数

在这里插入图片描述

结论:
① 随着 n n n 值变大, 5 n 2 + 7 n 5n^2+7n 5n2+7n 3 n 2 + 2 n 3n^2 + 2n 3n2+2n ,执行曲线重合, 说明 这种情况下, 5 5 5 3 3 3 可以忽略。
② 而 n 3 + 5 n n^3+5n n3+5n 6 n 3 + 4 n 6n^3+4n 6n3+4n ,执行曲线分离,说明多少次方是关键

2.3. 时间复杂度

    一般情况下,算法中的基本操作语句的重复执行次数是问题规模 n n n 的某个函数,用 T ( n ) T(n) T(n)表示,若有某个辅助函数 f ( n ) f(n) f(n),使得当 n n n 趋近于无穷大时, T ( n ) f ( n ) \frac {T(n)}{f(n)} f(n)T(n) 的极限值为不等于零的常数,则称 f ( n ) f(n) f(n) T ( n ) T(n) T(n)的同数量级函数。记作 T ( n ) = O ( f ( n ) ) \pmb{T(n)=O( f(n) )} T(n)=(f(n)),称 O ( f ( n ) ) O( f(n) ) (f(n)) 为算法的渐进时间复杂度,简称时间复杂度
    
     T ( n ) T(n) T(n) 不同,但时间复杂度可能相同。 如: T ( n ) = n 2 + 7 n + 6 T(n)=n^2+7n+6 T(n)=n2+7n+6 T ( n ) = 3 n 2 + 2 n + 2 T(n)=3n^2+2n+2 T(n)=3n2+2n+2 它们的 T ( n ) T(n) T(n) 不同,但时间复杂度相同,都为 O ( n 2 ) \pmb{O(n²)} O(n2)

    

计算时间复杂度的方法:
(以 T ( n ) = n 2 + 7 n + 6 T(n)=n^2+7n+6 T(n)=n2+7n+6 为例)
①用常数 1 1 1 代替运行时间中的所有加法常数。

T ( n ) = n 2 + 7 n + 6 T(n)=n^2+7n+6 T(n)=n2+7n+6 --> T ( n ) = n 2 + 7 n + 1 T(n)=n^2+7n+1 T(n)=n2+7n+1

②修改后的运行次数函数中,只保留最高阶项。

T ( n ) = n 2 + 7 n + 1 T(n)=n^2+7n+1 T(n)=n2+7n+1 --> T ( n ) = n 2 T(n) = n^2 T(n)=n2

③去除最高阶项的系数。

T ( n ) = n 2 T(n) = n^2 T(n)=n2 --> T ( n ) = n 2 T(n) = n^2 T(n)=n2 --> O ( n 2 ) O(n^2) O(n2)

2.4. 常见的时间复杂度

  1. 常数阶 O ( 1 ) O(1) O(1)
  2. 对数阶 O ( l o g 2 n ) O(log_2n) O(log2n)(其中, l o g log log以2为底,也可以是以3、4、5……为底)
  3. 线性阶 O ( n ) O(n) O(n)
  4. 线性对数阶 O ( n l o g 2 n ) O(nlog_2n) O(nlog2n)(其中, l o g log log以2为底,也可以是以3、4、5……为底)
  5. 平方阶 O ( n 2 ) O(n^2) O(n2)
  6. 立方阶 O ( n 3 ) O(n^3) O(n3)
  7. k 次方阶 O ( n k ) O(n^k) O(nk)
  8. 指数阶 O ( 2 n ) O(2^n) O(2n)

常见的时间复杂度对应的图:

在这里插入图片描述

说明:

  1. 常见的算法时间复杂度由小到大依次为: O ( 1 ) Ο(1) O(1) O ( l o g 2 n ) Ο(log_2n) O(log2n) O ( n ) Ο(n) O(n) O ( n l o g 2 n Ο(nlog_2n O(nlog2n)< O ( n 2 ) Ο(n^2) O(n2) O ( n 3 ) Ο(n^3) O(n3) O ( n k ) Ο(n^k) O(nk) O ( 2 n ) Ο(2^n) O(2n) ,随着问题规模 n 的不断增大,上述时间复杂度不断增大,算法的执行效率越低。
  2. 从图中可见,我们应该尽可能避免使用指数阶的算法。

① 常数阶 O ( 1 ) O(1) O(1)

无论代码执行了多少行,只要是没有循环等复杂结构,那这个代码的时间复杂度就都是 O ( 1 ) O(1) O(1)

int i = 1;
int j =2;
++i;
j++;
int m = i + j;

    上述代码在执行的时候,它消耗的时候并不随着某个变量的增长而增长,那么无论这类代码有多长,即使有几万几十万行,都可以用O(1)来表示它的时间复杂度。


② 对数阶 O ( l o g 2 n ) O(log_2n) O(log2n)

int i =1;
while(i < n){
	i= i * 2;
}

说明:
    在while循环里面,每次都将 i i i 乘以 2 2 2,乘完之后, i i i 距离 n n n 就越来越近了。假设循环 x x x 次之后, i i i 就大于 n n n 了,此时这个循环就退出了,也就是说 2 2 2 x x x 次方等于 n n n,那么 x = l o g 2 n x=log_2n x=log2n也就是说当循环 l o g 2 n log_2n log2n 次以后,这个代码就结束了。因此这个代码的时间复杂度为: O ( l o g 2 n ) O(log_2n) O(log2n)
     O ( l o g 2 n ) O(log_2n) O(log2n) 中的2是根据代码变化的,若 i = i ∗ 3 i = i * 3 i=i3 ,则是 O ( l o g 3 n ) O(log_3n) O(log3n)

    如果 N = a x ( a > 0 , a ≠ 1 ) N= a^x(a > 0,a ≠1) N=ax(a>0,a=1),即 a a a x x x 次方等于 N ( a > 0 , a ≠ 1 ) N(a>0,a≠1) N(a>0,a=1),那么数 x x x 叫做以 a a a 为底 N N N 的对数 ( l o g a r i t h m ) (logarithm) (logarithm),记作 x = l o g a N x = log_aN x=logaN 。其中, a a a 叫做对数的底数 N N N 叫做真数 x x x 叫做 “以 a a a 为底 N N N对数” 。


③ 线性阶 O ( n ) O(n) O(n)

for(i = 1; i <= n; ++i){
	j = i;
	j++;
}

说明:
    这段代码,for循环 里面的代码会执行 n n n 遍,因此它消耗的时间是随着 n n n 的变化而变化的,因此这类代码都可以用 O ( n ) O(n) O(n) 来表示它的时间复杂度。 T ( n ) = n + 1 T(n)=n+1 T(n)=n+1 --> O ( n ) O(n) O(n)


④ 线性对数阶 O ( n l o g 2 n ) O(nlog_2n) O(nlog2n)

for(m = 1; m < n; m++){
	i = 1;
	while(i < n){
		i = i * 2;
	}
}

说明:
    线性对数阶 O ( n l o g 2 N ) O(nlog_2N) O(nlog2N) 其实非常容易理解,将时间复杂度为 O ( l o g 2 n ) O(log_2n) O(log2n) 的代码循环 N N N 遍的话,那么它的时间复杂度就是 n ∗ O ( l o g 2 N ) n * O(log_2N) nO(log2N),也就是了 O ( n l o g 2 N ) O(nlog_2N) O(nlog2N)


⑤ 平方阶 O ( n 2 ) O(n^2) O(n2)

for(x = 1; x <= n; x++){
	for(i = 1; i <= n; i++){
		j = i;
		j++;
	}
}

说明:
    平方阶 O ( n 2 ) O(n²) O(n2) 就更容易理解了,如果把 O ( n ) O(n) O(n) 的代码再嵌套循环一遍,它的时间复杂度就是 O ( n 2 ) O(n²) O(n2),这段代码其实就是嵌套了2层 n n n 循环,它的时间复杂度就是 O ( n ∗ n ) O(n*n) O(nn),即 O ( n 2 ) O(n²) O(n2) 如果将其中一层循环的 n n n 改成 m m m ,那它的时间复杂度就变成了 O ( m ∗ n ) O(m*n) O(mn)


⑥ 立方阶 O ( n 3 ) O(n^3) O(n3) ⑦ k 次方阶 O ( n k ) O(n^k) O(nk)

说明: 参考上面的 O ( n 2 ) O(n²) O(n2) 去理解就好了, O ( n 3 ) O(n³) O(n3) 相当于3层 n n n 循环,其它的类似。

2.5. 平均时间复杂度和最坏时间复杂度

    平均时间复杂度是指所有可能的输入实例均以等概率出现的情况下,该算法的运行时间。
    最坏情况下的时间复杂度称最坏时间复杂度一般讨论的时间复杂度均是最坏情况下的时间复杂度。这样做的原因是:最坏情况下的时间复杂度是算法在任何输入实例上运行时间的界限,这就保证了算法的运行时间不会比最坏情况更长。

平均时间复杂度和最坏时间复杂度是否一致,和算法有关(如下图所示)。

排序法平均时间最差情况稳定度额外空间备注
冒泡 O ( n 2 ) O(n^2) O(n2) O ( n 2 ) O(n^2) O(n2)稳定 O ( 1 ) O(1) O(1) n n n小的情况较好
交换 O ( n 2 ) O(n^2) O(n2) O ( n 2 ) O(n^2) O(n2)不稳定 O ( 1 ) O(1) O(1) n n n小的情况较好
选择 O ( n 2 ) O(n^2) O(n2) O ( n 2 ) O(n^2) O(n2)不稳定 O ( 1 ) O(1) O(1) n n n小的情况较好
插入 O ( n 2 ) O(n^2) O(n2) O ( n 2 ) O(n^2) O(n2)稳定 O ( 1 ) O(1) O(1)大部分已排序时较好
基数 O ( l o g R B ) O(log_RB) O(logRB) O ( l o g R B ) O(log_RB) O(logRB)稳定 O ( n ) O(n) O(n)B是真数(0~9)
R是基数(个十百)
Shell O ( n l o g n ) O(nlogn) O(nlogn) O ( n s ) , 1 < s < 2 O(n^s) ,1<s<2 O(ns),1<s<2不稳定 O ( 1 ) O(1) O(1)s是所选分组
快速 O ( n l o g n ) O(nlogn) O(nlogn) O ( n 2 ) O(n^2) O(n2)不稳定 O ( n l o g n ) O(nlogn) O(nlogn) n n n大的情况较好
归并 O ( n l o g n ) O(nlogn) O(nlogn) O ( n l o g n ) O(nlogn) O(nlogn)稳定 O ( n ) O(n) O(n) n n n大的情况较好
O ( n l o g n ) O(nlogn) O(nlogn) O ( n l o g n ) O(nlogn) O(nlogn)不稳定 O ( 1 ) O(1) O(1) n n n大的情况较好

3. 算法的空间复杂度

    类似于时间复杂度的讨论,一个算法的空间复杂度(Space Complexity)定义为该算法所耗费的存储空间,它也是问题规模 n n n 的函数。
    空间复杂度是对一个算法在运行过程中临时占用存储空间大小的量度。有的算法需要占用的临时工作单元数与解决问题的规模 n n n 有关,它随着 n n n 的增大而增大,当 n n n 较大时,将占用较多的存储单元,例如快速排序、归并排序、 基数排序就属于这种情况。

    在做算法分析时,主要讨论的是时间复杂度。从用户使用体验上看,更看重的程序执行的速度。一些缓存产品(redis, memcache)和算法(基数排序)本质就是用空间换时间

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/228013.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

浅析AI智能视频监控技术在城市交通中的作用及意义

城市交通作为整个城市的整体脉络&#xff0c;每天都发挥着重要作用&#xff0c;为了最大程度地避免城市交通堵塞、提高城市交通效率&#xff0c;智能视频监控系统发挥了重要作用。具体表现在以下几个方面&#xff1a; 1、交通违规监管&#xff1a;TSINGSEE青犀智能视频监控系统…

软件开发代码审核制度

建立软件代码审核制度是确保代码质量和团队协作的重要步骤。以下是建立有效的软件代码审核制度的一些建议&#xff0c;希望对大家有所帮助。北京木奇移动技术有限公司&#xff0c;专业的软件外包开发公司&#xff0c;欢迎交流合作。 1.制定代码审核准则&#xff1a; 明确定义代…

【C/PTA —— 15.结构体2(课内实践)】

C/PTA —— 15.结构体2&#xff08;课内实践&#xff09; 7-1 计算职工工资7-2 计算平均成绩7-3 找出总分最高的学生7-4 通讯录的录入与显示 7-1 计算职工工资 #include<stdio.h> #include<stdlib.h> typedef struct GZ {char name[6];double j;double f;double z;…

如何将 MySQL 数据库转换为 SQL Server

本文解释了为什么组织希望将其 MySQL 数据库转换为 Microsoft SQL 数据库。本文接着详细介绍了尝试转换之前需要记住的事项以及所涉及的方法。专业的数据库转换器工具将帮助您快速将 MySQL 数据库记录转换为 MS SQL Server。 在继续之前&#xff0c;我们先讨论一下 MySQL 到 M…

React/Vue/Svelte 前端项目中开始使用TailwindCSS

背景 TailwindCSS 近年来在前端圈非常流行&#xff0c;它摆脱了原有的CSS限制&#xff0c;以灵活实用为卖点&#xff0c;用户通过各种class组合即可构建出漂亮的用户界面。对于初学者而言&#xff0c;可能需要一些上手成本&#xff0c;一旦掌握实用技巧后&#xff0c;Tailwind…

TCP通信

第二十一章 网络通信 本章节主要讲解的是TCP和UDP两种通信方式它们都有着自己的优点和缺点 这两种通讯方式不通的地方就是TCP是一对一通信 UDP是一对多的通信方式 接下来会一一讲解 TCP通信 TCP通信方式呢 主要的通讯方式是一对一的通讯方式&#xff0c;也有着优点和缺点…

QQ录屏怎么录声音,如何解决声音录制问题?

在数字化时代&#xff0c;qq不仅是我们日常沟通的工具&#xff0c;还提供了强大的录屏功能&#xff0c;让用户能够轻松捕捉屏幕上的精彩瞬间。然而&#xff0c;很多用户可能会困惑于qq录屏怎么录声音。在本文中&#xff0c;我们将详细介绍如何通过QQ录屏功能录制屏幕及声音&…

【C/PTA —— 15.结构体2(课外实践)】

C/PTA —— 15.结构体2&#xff08;课外实践&#xff09; 7-1 一帮一7-2 考试座位号7-3 新键表输出7-4 可怕的素质7-5 找出同龄者7-6 排队7-7 军训 7-1 一帮一 #include<stdio.h> #include<string.h>struct student {int a;char name[20]; };struct student1 {int …

JavaWeb-HTTP协议

1. 什么是HTTP协议 HTTP超文本传输协(Hyper Text transfer protocol)&#xff0c;是一种用于用于分布式、协作式和超媒体信息系统的应用层协议。它于1990年提出&#xff0c;经过十几年的使用与发展&#xff0c;得到不断地完善和扩展。HTTP 是为 Web 浏览器与 Web 服务器之间的…

新生儿出生缺陷筛查的关键注意事项

引言&#xff1a; 新生儿的出生缺陷是一个复杂而广泛的问题&#xff0c;及早的筛查和诊断对于预防和管理这些缺陷至关重要。出生缺陷可能涉及各个系统&#xff0c;包括心脏、神经、遗传等&#xff0c;因此及时而全面的筛查对新生儿的健康至关重要。本文将深入探讨新生儿出生缺…

Matlab 点云对称性检测

文章目录 一、简介二、实现代码三、实现效果参考文献一、简介 这是一个很有趣的功能,它的思路其实与ICP算法的思路有些相似: 首先,它会初始化两个旋转角度,即绕x轴旋转与绕y轴旋转,初始的过程是将点对称(镜像)过去,计算与匹配点之间的距离误差,误差最小者为最优初始值…

抖店店铺没流量?商品销售量低?原因在于这几个!

我是电商珠珠 近期&#xff0c;很多人来跟我反馈&#xff0c;说自己的店铺没有流量和曝光&#xff0c;更别提出单了。 其实&#xff0c;想要自己的店铺月销百万&#xff0c;每天要做的工作有很多&#xff0c;比如分析市场、选品上架、优化、对接达人等&#xff0c;想要自己的…

JAVA后端自学技能实操合集

JAVA后端自学技能实操 内容将会持续更新中,有需要添加什么内容可以再评论区留言,大家一起学习FastDFS使用docker安装FastDFS(linux)集成到springboot项目中 内容将会持续更新中,有需要添加什么内容可以再评论区留言,大家一起学习 FastDFS 组名&#xff1a;文件上传后所在的 st…

网站建设app开发小程序制作|企业软件定制

网站建设app开发小程序制作|企业软件定制 网站建设和软件开发是现代社会非常重要的领域&#xff0c;它们对于企业、机构和个人来说都具有非常大的意义。随着移动互联网的快速发展&#xff0c;小程序制作也逐渐成为一种非常受欢迎的方式。 在过去&#xff0c;建立一个网站需要具…

Andorid sudio 换行方法

1.遇到的问题&#xff0c;二维码内容要换行 String text "成绩&#xff1a;1000 \n姓名&#xff1a;张三 \n姓名&#xff1a;张三 \n姓名&#xff1a;张三 \n姓名&#xff1a;张三 \n姓名&#xff1a;张三 \n姓名&#xff1a;张三 \n姓名&#xff1a;张三 \n姓名&#xff…

JVM 类的加载器的基本特征和作用

Java全能学习面试指南&#xff1a;https://javaxiaobear.cn 1、作用 类加载器是 JVM 执行类加载机制的前提 ClassLoader的作用&#xff1a; ClassLoader是Java的核心组件&#xff0c;所有的Class都是由ClassLoader进行加载的&#xff0c;ClassLoader负责通过各种方式将Class信…

5V 全桥驱动芯片,1.3A 持续驱动输出电流,PWM(IN1/IN2)的输入模式,适用于摄像机等产品上,可替代LG9110S

GC9110 是一款低压 5V 全桥驱动芯片&#xff0c; 为摄像机、消费类产品、玩具和其他低压或 者电池供电的运动控制类应用提供了集成的 电机驱动解决方案。 GC9110 能提供高达 1.3A 的持续输出电 流。可以工作在 1.2~6V 的电源电压上。 GC9110 具有 PWM&#xff08;IN/IN&#xf…

1 接口测试介绍

在软件测试工作中&#xff0c;接口测试是必不可少的。接口测试一般是发生在单元测试之后&#xff0c;系统测试之前。当开发人员输出API文档后&#xff0c;测试人员就可以开始编写接口测试用例了。接口测试可以让测试人员更早的介入&#xff0c;不需要等待前后端联调完成才开始测…

学习IO的第五天

作业 &#xff1a;使用两个线程完成文件的拷贝写入&#xff0c;分线程1写入前半段&#xff0c;分线程2写入后半段&#xff0c;主线程用来回收资源 #include <head.h>void *sork(void *arg); void *sork2(void *arg);int file_copy(int start,int len) //拷贝的函数 {i…

摄像头为什么需要积分球进行校准?

摄像头均匀光源校准可以提高图像质量、消除误差因素、实现标准化测量、保证测量结果的可靠性&#xff0c;并提高生产效率。因此&#xff0c;对于需要高精度、高清晰度图像的领域&#xff0c;摄像头均匀光源校准是非常必要的。 一、为什么摄像头需要均匀光源校准&#xff1f; 提…