AI助力智慧农业,基于DETR【DEtection TRansformer】模型开发构建田间作物场景下庄稼作物、杂草检测识别系统

智慧农业随着数字化信息化浪潮的演变有了新的定义,在前面的系列博文中,我们从一些现实世界里面的所见所想所感进行了很多对应的实践,感兴趣的话可以自行移步阅读即可:

《自建数据集,基于YOLOv7开发构建农田场景下杂草检测识别系统》 

《轻量级目标检测模型实战——杂草检测》

《激光除草距离我们实际的农业生活还有多远,结合近期所见所感基于yolov8开发构建田间作物杂草检测识别系统》

《基于yolov5的农作物田间杂草检测识别系统》

 

《AI助力智慧农业,基于YOLOv3开发构建农田场景下的庄稼作物、田间杂草智能检测识别系统》

《AI助力智慧农业,基于YOLOv4开发构建不同参数量级农田场景下庄稼作物、杂草智能检测识别系统》 

《AI助力智慧农业,基于YOLOv5全系列模型【n/s/m/l/x】开发构建不同参数量级农田场景下庄稼作物、杂草智能检测识别系统》

 《AI助力智慧农业,基于YOLOv6最新版本模型开发构建不同参数量级农田场景下庄稼作物、杂草智能检测识别系统》

《AI助力智慧农业,基于YOLOv7【tiny/yolov7/yolov7x】开发构建不同参数量级农田场景下庄稼作物、杂草智能检测识别系统》 

《AI助力智慧农业,基于YOLOv8全系列模型【n/s/m/l/x】开发构建不同参数量级的识别系统》

自动化的激光除草,是未来大面积农业规划化作物种植生产过程中非常有效的技术手段,本文是AI助力智慧农业的第七篇系列博文,主要的目的就是想要基于DETR来开发构建检测模型,助力智能检测分析。

首先看下实例效果:

DETR (DEtection TRansformer) 是一种基于Transformer架构的端到端目标检测模型。与传统的基于区域提议的目标检测方法(如Faster R-CNN)不同,DETR采用了全新的思路,将目标检测问题转化为一个序列到序列的问题,通过Transformer模型实现目标检测和目标分类的联合训练。

DETR的工作流程如下:

输入图像通过卷积神经网络(CNN)提取特征图。
特征图作为编码器输入,经过一系列的编码器层得到图像特征的表示。
目标检测问题被建模为一个序列到序列的转换任务,其中编码器的输出作为解码器的输入。
解码器使用自注意力机制(self-attention)对编码器的输出进行处理,以获取目标的位置和类别信息。
最终,DETR通过一个线性层和softmax函数对解码器的输出进行分类,并通过一个线性层预测目标框的坐标。
DETR的优点包括:

端到端训练:DETR模型能够直接从原始图像到目标检测结果进行端到端训练,避免了传统目标检测方法中复杂的区域提议生成和特征对齐的过程,简化了模型的设计和训练流程。
不受固定数量的目标限制:DETR可以处理变长的输入序列,因此不受固定数量目标的限制。这使得DETR能够同时检测图像中的多个目标,并且不需要设置预先确定的目标数量。
全局上下文信息:DETR通过Transformer的自注意力机制,能够捕捉到图像中不同位置的目标之间的关系,提供了更大范围的上下文信息。这有助于提高目标检测的准确性和鲁棒性。
然而,DETR也存在一些缺点:

计算复杂度高:由于DETR采用了Transformer模型,它在处理大尺寸图像时需要大量的计算资源,导致其训练和推理速度相对较慢。
对小目标的检测性能较差:DETR模型在处理小目标时容易出现性能下降的情况。这是因为Transformer模型在处理小尺寸目标时可能会丢失细节信息,导致难以准确地定位和分类小目标。

接下来看下我们自己构建的数据集,共包含3000的数据量:

官方项目地址在这里,如下所示:

可以看到目前已经收获了超过1.2w的star量,还是很不错的了。

DETR整体数据流程示意图如下所示:

官方也提供了对应的预训练模型,可以自行使用:

本文选择的预训练官方权重是detr-r50-e632da11.pth,首先需要基于官方的预训练权重开发能够用于自己的 个性化数据集的权重,如下所示:

pretrained_weights = torch.load("./weights/detr-r50-e632da11.pth")
num_class = 2 + 1
pretrained_weights["model"]["class_embed.weight"].resize_(num_class+1,256)
pretrained_weights["model"]["class_embed.bias"].resize_(num_class+1)
torch.save(pretrained_weights,'./weights/detr_r50_%d.pth'%num_class)

因为这里我的类别数量为2,所以num_class修改为:10+1,根据自己的实际情况修改即可。生成后如下所示:

终端执行:

python main.py --dataset_file "coco" --coco_path "/0000" --epoch 100 --lr=1e-4 --batch_size=32 --num_workers=0 --output_dir="outputs" --resume="weights/detr_r50_3.pth"

即可启动训练。训练启动如下:

训练完成如下所示:

Accumulating evaluation results...
DONE (t=0.40s).
IoU metric: bbox
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.564
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.855
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.598
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.062
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.220
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.679
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.513
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.693
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.754
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.067
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.453
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.858
Training time 10:13:04

结果评估如下:

iter 000: mAP@50= 68.7, score=0.696, f1=0.770
iter 050: mAP@50= 83.1, score=0.831, f1=0.889
iter latest: mAP@50= 85.5, score=0.863, f1=0.904
iter 000: mAP@50= 68.7, score=0.696, f1=0.770
iter 050: mAP@50= 83.1, score=0.831, f1=0.889
iter latest: mAP@50= 85.5, score=0.863, f1=0.904

【Precision曲线】
精确率曲线(Precision-Recall Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
绘制精确率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率和召回率。
将每个阈值下的精确率和召回率绘制在同一个图表上,形成精确率曲线。
根据精确率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察精确率曲线,我们可以根据需求确定最佳的阈值,以平衡精确率和召回率。较高的精确率意味着较少的误报,而较高的召回率则表示较少的漏报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
精确率曲线通常与召回率曲线(Recall Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。
【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。
召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。
绘制召回率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的召回率和对应的精确率。
将每个阈值下的召回率和精确率绘制在同一个图表上,形成召回率曲线。
根据召回率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察召回率曲线,我们可以根据需求确定最佳的阈值,以平衡召回率和精确率。较高的召回率表示较少的漏报,而较高的精确率意味着较少的误报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
召回率曲线通常与精确率曲线(Precision Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。
【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能。
F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。
绘制F1值曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率、召回率和F1分数。
将每个阈值下的精确率、召回率和F1分数绘制在同一个图表上,形成F1值曲线。
根据F1值曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
F1值曲线通常与接收者操作特征曲线(ROC曲线)一起使用,以帮助评估和比较不同模型的性能。它们提供了更全面的分类器性能分析,可以根据具体应用场景来选择合适的模型和阈值设置。

loss可视化如下所示:

感兴趣的话可以自行动手实践尝试下!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/227178.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Java 第21章 网络通信

网络程序设计基础 网络程序设计编写的是与其他计算机进行通信的程序。Java 已经将网络程序所需要的元素封装成不同的类,用户只要创建这些类的对象,使用相应的方法,即使不具备有关的网络支持,也可以编写出高质量的网络通信程序。 …

Python-Opencv图像处理的小坑

1.背景 最近在做一点图像处理的事情,在做处理时的cv2遇到一些小坑,希望大家遇到的相关的问题可以注意!! 2. cv2.imwrite保存图像 cv2.imwrite(filename, img, [params]) filename:需要写入的文件名,包括路…

一键AI智能改写,一键AI智能生成原创文章

在数字化时代,创作内容已经成为大家日常生活和工作中不可或缺的一部分。本文将深入探讨一键AI智能改写的概念,剖析其背后的技术原理,同时聚焦于147原创助手这一代表性工具,解读其在改写文案上的独特之处,以及在各大平台…

JavaWeb-Tomcat

1. Web服务器 web服务器由硬件和软件组成: 硬件:计算机系统软件:计算机上安装的服务器软件,安装后可以为web应用提供网络服务。 常见的JavaWeb服务器: Tomcat(Apache):应用最广泛的…

B站缓存视频M4S合并MP4(js + ffmpeg )

文章目录 B站缓存视频转MP4(js ffmpeg )1、说明 2、ffmpeg2.1 下载地址2.2 配置环境变量2.3 测试2.4 转换MP4命令 3、处理程序 B站缓存视频转MP4(js ffmpeg ) 注意:这样的方式只用于个人之间不同设备的离线观看。请…

Docker构建自定义镜像

创建一个docker-demo的文件夹,放入需要构建的文件 主要是配置Dockerfile文件 第一种配置方法 # 指定基础镜像 FROM ubuntu:16.04 # 配置环境变量,JDK的安装目录 ENV JAVA_DIR/usr/local# 拷贝jdk和java项目的包 COPY ./jdk8.tar.gz $JAVA_DIR/ COPY ./docker-demo…

进行生成简单数字图片

1.之前只能做一些图像预测,我有个大胆的想法,如果神经网络正向就是预测图片的类别,如果我只有一个类别那就可以进行生成图片,专业术语叫做gan对抗网络 2.训练代码 import torch import torch.nn as nn import torch.optim as optim import torchvision.transforms as transfo…

数据分析基础之《matplotlib(3)—散点图》

一、常见图形种类及意义 1、matplotlib能够绘制折线图、散点图、柱状图、直方图、饼图。我们需要知道不同的统计图的意义,以此来决定选择哪种统计图来呈现我们的数据 2、折线图plot 说明:以折线的上升或下降来表示统计数量的增减变化的统计图 特点&…

Django + Matplotlib:实现数据分析显示与下载为PDF或SVG

写作背景 首先,数据分析在当前的信息时代中扮演着重要的角色。随着数据量的增加和复杂性的提高,人们对于数据分析的需求也越来越高。 其次,笔者也确确实实曾经接到过一个这样的开发需求,甲方是一个医疗方面的科研团队&#xff0…

网络安全(五)--Linux 入侵检测分析技术

8. Linux 入侵检测分析技术 目标 了解入侵检测分析的基本方法掌握查看登录失败用户的方法掌握查阅历史命令的方法掌握检查系统开机自启服务的方法 8.1. 概述 最好的安全防护当然是“域敌于国门之外”, 通过安全防护技术,来保证当前主机不被非授权人员…

【链表Linked List】力扣-117 填充每个节点的下一个右侧节点指针II

目录 问题描述 解题过程 官方题解 问题描述 给定一个二叉树: struct Node {int val;Node *left;Node *right;Node *next; } 填充它的每个 next 指针,让这个指针指向其下一个右侧节点。如果找不到下一个右侧节点,则将 next 指针设置为 N…

IT行业软件数据文件传输安全与高效是如何保障的?

在当今迅速发展的科技世界中,云计算、大数据、移动互联网等信息技术正迎来蓬勃发展,IT行业正置身于一个全新的世界。数据不仅是最重要的资产,也是企业竞争力的核心所在。然而,如何缩短信息共享时间、高速流转数据、跨部门/跨区域协…

最新版本——Hadoop3.3.6单机版完全部署指南

大家好,我是独孤风,大数据流动的作者。 本文基于最新的 Hadoop 3.3.6 的版本编写,带大家通过单机版充分了解 Apache Hadoop 的使用。本文更强调实践,实践是大数据学习的重要环节,也能在实践中对该技术有更深的理解&…

企业计算机服务器中了mallox勒索病毒如何处理,Mallox勒索病毒解密

随着计算机技术的不断发展,越来越多的企业利用网络来提高工作效率,但随之而来的网络安全威胁也在不断增加,各种勒索病毒种类不断增加,给企业的数据安全带来严重的威胁,影响企业的生产业务开展。近期,云天数…

微信小程序js数组对象根据某个字段排序

一、排序栗子 注: 属性字段需要进行转换,如String类型或者Number类型 //升序排序 首元素(element1)在前 降序则(element1)元素在后 data data.sort((element1, element2) >element1.属性 - element2.属性 ); 二、代码 Page({/*** 页面的初始数据*/data: {user:…

【Flink系列三】数据流图和任务链计算方式

上文介绍了如何计算并行度和slot的数量,本文介绍Flink代码提交后,如何生成计算的DAG数据流图。 程序和数据流图 所有的Flink程序都是由三部分组成的:Source、Transformation和Sink。Source负责读取数据源,Transformation利用各种…

idea本地调试hadoop 遇到的几个问题

1.DEA对MapReduce的toString调用报错:Method threw ‘java.lang.IllegalStateException‘ exception. Cannot evaluate org.apache.hadoop.mapreduc 解决方法:关闭 IDEA 中的启用“ tostring() ”对象视图 2.代码和hdfs路径都对的情况下,程序…

【EI会议征稿】第三届密码学、网络安全和通信技术国际会议(CNSCT 2024)

第三届密码学、网络安全和通信技术国际会议(CNSCT 2024) 2024 3rd International Conference on Cryptography, Network Security and Communication Technology 随着互联网和网络应用的不断发展,网络安全在计算机科学中的地位越来越重要&…

MySQL 中Relay Log打满磁盘问题的排查方案

MySQL 中Relay Log打满磁盘问题的排查方案 引言: MySQL Relay Log(中继日志)是MySQL复制过程中的一个重要组件,它用于将主数据库的二进制日志事件传递给从数据库。然而,当中继日志不断增长并最终占满磁盘空间时&…

5组10个共50个音频可视化效果PR音乐视频制作模板

我们常常看到的图形跟着音乐跳动,非常有节奏感,那这个是怎么做到的呢?5组10个共50个音频可视化效果PR音乐视频制作模板满足你的制作需求。 PR音乐模板|10个音频可视化视频制作模板05 https://prmuban.com/36704.html 10个音频可视化视频制作…