ELK 企业级日志分析系统

---------------------- ELK 概述 ----------------------------------------


1、ELK 简介
ELK平台是一套完整的日志集中处理解决方案,将 ElasticSearch、Logstash 和 Kiabana 三个开源工具配合使用, 完成更强大的用户对日志的查询、排序、统计需求。
●ElasticSearch:是基于Lucene(一个全文检索引擎的架构)开发的分布式存储检索引擎,用来存储各类日志。
Elasticsearch 是用 Java 开发的,可通过 RESTful Web 接口,让用户可以通过浏览器与 Elasticsearch 通信。
Elasticsearch是一个实时的、分布式的可扩展的搜索引擎,允许进行全文、结构化搜索,它通常用于索引和搜索大容量的日志数据,也可用于搜索许多不同类型的文档。

●Kiabana:Kibana 通常与 Elasticsearch 一起部署,Kibana 是 Elasticsearch 的一个功能强大的数据可视化 Dashboard,Kibana 提供图形化的 web 界面来浏览 Elasticsearch 日志数据,可以用来汇总、分析和搜索重要数据。

●Logstash:作为数据收集引擎。它支持动态的从各种数据源搜集数据,并对数据进行过滤、分析、丰富、统一格式等操作,然后存储到用户指定的位置,一般会发送给 Elasticsearch。
Logstash 由 Ruby 语言编写,运行在 Java 虚拟机(JVM)上,是一款强大的数据处理工具, 可以实现数据传输、格式处理、格式化输出。Logstash 具有强大的插件功能,常用于日志处理。

#可以添加的其它组件:
●Filebeat:轻量级的开源日志文件数据搜集器。通常在需要采集数据的客户端安装 Filebeat,并指定目录与日志格式,Filebeat 就能快速收集数据,并发送给 logstash 进行解析,或是直接发给 Elasticsearch 存储,性能上相比运行于 JVM 上的 logstash 优势明显,是对它的替代。常应用于 EFLK 架构当中。

#filebeat 结合 logstash 带来好处:
1)通过 Logstash 具有基于磁盘的自适应缓冲系统,该系统将吸收传入的吞吐量,从而减轻 Elasticsearch 持续写入数据的压力
2)从其他数据源(例如数据库,S3对象存储或消息传递队列)中提取
3)将数据发送到多个目的地,例如S3,HDFS(Hadoop分布式文件系统)或写入文件
4)使用条件数据流逻辑组成更复杂的处理管道

●缓存/消息队列(redis、kafka、RabbitMQ等):可以对高并发日志数据进行流量削峰和缓冲,这样的缓冲可以一定程度的保护数据不丢失,还可以对整个架构进行应用解耦。

●Fluentd:是一个流行的开源数据收集器。由于 logstash 太重量级的缺点,Logstash 性能低、资源消耗比较多等问题,随后就有 Fluentd 的出现。相比较 logstash,Fluentd 更易用、资源消耗更少、性能更高,在数据处理上更高效可靠,受到企业欢迎,成为 logstash 的一种替代方案,常应用于 EFK 架构当中。在 Kubernetes 集群中也常使用 EFK 作为日志数据收集的方案。
在 Kubernetes 集群中一般是通过 DaemonSet 来运行 Fluentd,以便它在每个 Kubernetes 工作节点上都可以运行一个 Pod。 它通过获取容器日志文件、过滤和转换日志数据,然后将数据传递到 Elasticsearch 集群,在该集群中对其进行索引和存储。


2、为什么要使用 ELK:
日志主要包括系统日志、应用程序日志和安全日志。系统运维和开发人员可以通过日志了解服务器软硬件信息、检查配置过程中的错误及错误发生的原因。经常分析日志可以了解服务器的负荷,性能安全性,从而及时采取措施纠正错误。
往往单台机器的日志我们使用grep、awk等工具就能基本实现简单分析,但是当日志被分散的储存不同的设备上。如果你管理数十上百台服务器,你还在使用依次登录每台机器的传统方法查阅日志。这样是不是感觉很繁琐和效率低下。当务之急我们使用集中化的日志管理,例如:开源的syslog,将所有服务器上的日志收集汇总。集中化管理日志后,日志的统计和检索又成为一件比较麻烦的事情,一般我们使用 grep、awk和wc等Linux命令能实现检索和统计,但是对于要求更高的查询、排序和统计等要求和庞大的机器数量依然使用这样的方法难免有点力不从心。
一般大型系统是一个分布式部署的架构,不同的服务模块部署在不同的服务器上,问题出现时,大部分情况需要根据问题暴露的关键信息,定位到具体的服务器和服务模块,构建一套集中式日志系统,可以提高定位问题的效率。

3、完整日志系统基本特征
收集:能够采集多种来源的日志数据
传输:能够稳定的把日志数据解析过滤并传输到存储系统
存储:存储日志数据
分析:支持 UI 分析
警告:能够提供错误报告,监控机制

4、ELK 的工作原理:
(1)在所有需要收集日志的服务器上部署Logstash;或者先将日志进行集中化管理在日志服务器上,在日志服务器上部署 Logstash。
(2)Logstash 收集日志,将日志格式化并输出到 Elasticsearch 群集中。
(3)Elasticsearch 对格式化后的数据进行索引和存储。
(4)Kibana 从 ES 群集中查询数据生成图表,并进行前端数据的展示。

总结:logstash作为日志搜集器,从数据源采集数据,并对数据进行过滤,格式化处理,然后交由Elasticsearch存储,kibana对日志进行可视化处理。


node1节点(2C/4G):node1/192.168.179.20                Elasticsearch
node2节点(2C/4G):node2/192.168.179.23                Elasticsearch
Apache节点:apache/192.168.179.25                Logstash  Kibana  Apache


systemctl stop firewalld
setenforce 0
------------------- ELK Elasticsearch 集群部署(在Node1、Node2节点上操作) ----------------------------------
1.环境准备
#设置Java环境

java -version                                        #如果没有安装,yum -y install java
openjdk version "1.8.0_131"
OpenJDK Runtime Environment (build 1.8.0_131-b12)
OpenJDK 64-Bit Server VM (build 25.131-b12, mixed mode)

 

2.部署 Elasticsearch 软件
(1)安装elasticsearch—rpm包
#上传elasticsearch-6.7.2.rpm到/opt目录下
cd /opt
rpm -ivh elasticsearch-6.7.2.rpm

(2)修改elasticsearch主配置文件
cp /etc/elasticsearch/elasticsearch.yml /etc/elasticsearch/elasticsearch.yml.bak
vim /etc/elasticsearch/elasticsearch.yml
--17--取消注释,指定集群名字
cluster.name: my-elk-cluster
--23--取消注释,指定节点名字:Node1节点为node1,Node2节点为node2
node.name: node1
node.master: true        #是否master节点,false为否
node.data: true            #是否数据节点,false为否
--33--取消注释,指定数据存放路径
path.data: /var/lib/elasticsearch
--37--取消注释,指定日志存放路径
path.logs: /var/log/elasticsearch
--45--取消注释,避免es使用swap交换分区
bootstrap.memory_lock: true
--55--取消注释,设置监听地址,0.0.0.0代表所有地址
network.host: 0.0.0.0
--59--取消注释,ES 服务的默认监听端口为9200
http.port: 9200                    #指定es集群提供外部访问的接口
transport.tcp.port: 9300        #指定es集群内部通信接口
--68--取消注释,集群发现通过单播实现,指定要发现的节点
discovery.zen.ping.unicast.hosts: ["192.168.80.10:9300", "192.168.80.11:9300"]

grep -v "^#" /etc/elasticsearch/elasticsearch.yml

(3)es 性能调优参数
#优化最大内存大小和最大文件描述符的数量
vim /etc/security/limits.conf
......

*  soft    nofile          65536
*  hard    nofile          65536
*  soft    nproc           32000
*  hard    nproc           32000
*  soft    memlock         unlimited
*  hard    memlock         unlimited

vim /etc/systemd/system.conf

DefaultLimitNOFILE=65536
DefaultLimitNPROC=32000
DefaultLimitMEMLOCK=infinity

需重启生效 : reboot

#优化elasticsearch用户拥有的内存权限
由于ES构建基于lucene, 而lucene设计强大之处在于lucene能够很好的利用操作系统内存来缓存索引数据,以提供快速的查询性能。lucene的索引文件segements是存储在单文件中的,并且不可变,对于OS来说,能够很友好地将索引文件保持在cache中,以便快速访问;因此,我们很有必要将一半的物理内存留给lucene ; 另一半的物理内存留给ES(JVM heap )。所以, 在ES内存设置方面,可以遵循以下原则:
1.当机器内存小于64G时,遵循通用的原则,50%给ES,50%留给操作系统,供lucene使用
2.当机器内存大于64G时,遵循原则:建议分配给ES分配 4~32G 的内存即可,其它内存留给操作系统,供lucene使用

vim /etc/sysctl.conf
#一个进程可以拥有的最大内存映射区域数,参考数据(分配 2g/262144,4g/4194304,8g/8388608)
vm.max_map_count=262144

sysctl -p
sysctl -a | grep vm.max_map_count

 

(4)启动elasticsearch是否成功开启
systemctl start elasticsearch.service
systemctl enable elasticsearch.service
netstat -antp | grep 9200

 (5)查看节点信息
浏览器访问  http://192.168.179.20:9200  、 http://192.168.179.23:9200 查看节点 Node1、Node2 的信息。

 

浏览器访问 http://192.168.179.20:9200/_cluster/health?pretty  、 http://192.168.179.23:9200/_cluster/health?pretty查看群集的健康情况,可以看到 status 值为 green(绿色), 表示节点健康运行。

 

浏览器访问 http://192.168.179.20:9200/_cluster/state?pretty  检查群集状态信息。

#使用上述方式查看群集的状态对用户并不友好,可以通过安装 Elasticsearch-head 插件,可以更方便地管理群集。


3.安装 Elasticsearch-head 插件
Elasticsearch 在 5.0 版本后,Elasticsearch-head 插件需要作为独立服务进行安装,需要使用npm工具(NodeJS的包管理工具)安装。
安装 Elasticsearch-head 需要提前安装好依赖软件 node 和 phantomjs。
node:是一个基于 Chrome V8 引擎的 JavaScript 运行环境。
phantomjs:是一个基于 webkit 的JavaScriptAPI,可以理解为一个隐形的浏览器,任何基于 webkit 浏览器做的事情,它都可以做到。

(1)编译安装 node
#上传软件包 node-v8.2.1.tar.gz 到/opt
yum install gcc gcc-c++ make -y

cd /opt
tar zxvf node-v8.2.1.tar.gz

cd node-v8.2.1/
./configure
make && make install

(2)安装 phantomjs
#上传软件包 phantomjs-2.1.1-linux-x86_64.tar.bz2 到
cd /opt
tar jxvf phantomjs-2.1.1-linux-x86_64.tar.bz2
cd /opt/phantomjs-2.1.1-linux-x86_64/bin
cp phantomjs /usr/local/bin

(3)安装 Elasticsearch-head 数据可视化工具
#上传软件包 elasticsearch-head-master.zip 到/opt
cd /opt
unzip elasticsearch-head-master.zip
cd /opt/elasticsearch-head/
npm install         //安装依赖包

(4)修改 Elasticsearch 主配置文件
vim /etc/elasticsearch/elasticsearch.yml
......
--末尾添加以下内容--
http.cors.enabled: true                #开启跨域访问支持,默认为 false
http.cors.allow-origin: "*"            #指定跨域访问允许的域名地址为所有

systemctl restart elasticsearch

(5)启动 elasticsearch-head 服务
#必须在解压后的 elasticsearch-head 目录下启动服务,进程会读取该目录下的 gruntfile.js 文件,否则可能启动失败。
cd /usr/local/src/elasticsearch-head/
npm run start &

> elasticsearch-head@0.0.0 start /usr/local/src/elasticsearch-head
> grunt server

Running "connect:server" (connect) task
Waiting forever...
Started connect web server on http://localhost:9100

#elasticsearch-head 监听的端口是 9100
netstat -natp |grep 9100

(6)通过 Elasticsearch-head 查看 Elasticsearch 信息
通过浏览器访问 http://192.168.80.10:9100/ 地址并连接群集。如果看到群集健康值为 green 绿色,代表群集很健康。

输入http://192.168.179.25:9200/  并连接

 

(7)插入索引
#通过命令插入一个测试索引,索引为 index-demo,类型为 test。
curl -X PUT 'localhost:9200/index-demo/test/1?pretty&pretty' -H 'content-Type: application/json' -d '{"user":"zhangsan","mesg":"hello world"}'
//输出结果如下:
{
"_index" : "index-demo",
"_type" : "test",
"_id" : "1",
"_version" : 1,
"result" : "created",
"_shards" : {
"total" : 2,
"successful" : 2,
"failed" : 0
},
"created" : true
}

 

浏览器访问 http://192.168.80.10:9100/ 查看索引信息,可以看见索引默认被分片5个,并且有一个副本。


点击“数据浏览”,会发现在node1上创建的索引为 index-demo,类型为 test 的相关信息。

 

 


---------------------- ELK Logstash 部署(在 Apache 节点上操作) ---------------------------


Logstash 一般部署在需要监控其日志的服务器。在本案例中,Logstash 部署在 Apache 服务器上,用于收集 Apache 服务器的日志信息并发送到 Elasticsearch。

1.更改主机名
hostnamectl set-hostname apache

2.安装Apahce服务(httpd)
yum -y install httpd
systemctl start httpd

3.安装Java环境
yum -y install java
java -version

4.安装logstash
#上传软件包 logstash-6.7.2.rpm 到/opt目录下
cd /opt
rpm -ivh logstash-6.7.2.rpm                          
systemctl start logstash.service                      
systemctl enable logstash.service

ln -s /usr/share/logstash/bin/logstash /usr/local/bin/

5.测试 Logstash
Logstash 命令常用选项:
-f:通过这个选项可以指定 Logstash 的配置文件,根据配置文件配置 Logstash 的输入和输出流。
-e:从命令行中获取,输入、输出后面跟着字符串,该字符串可以被当作 Logstash 的配置(如果是空,则默认使用 stdin 作为输入,stdout 作为输出)。
-t:测试配置文件是否正确,然后退出。

定义输入和输出流:
#输入采用标准输入,输出采用标准输出(类似管道),新版本默认使用 rubydebug 格式输出
logstash -e 'input { stdin{} } output { stdout{} }'

#使用 rubydebug 输出详细格式显示,codec 为一种编解码器
logstash -e 'input { stdin{} } output { stdout{ codec=>rubydebug } }'
......
www.baidu.com                                        #键入内容(标准输入)
{
    "@timestamp" => 2020-12-22T02:15:39.136Z,        #输出结果(标准输出处理后的结果)
      "@version" => "1",
          "host" => "apache",
       "message" => "www.baidu.com"
}

 

#使用 Logstash 将信息写入 Elasticsearch 中
logstash -e 'input { stdin{} } output { elasticsearch { hosts=>["192.168.80.10:9200"] } }'
             输入                输出            对接
......
www.baidu.com                                        #键入内容(标准输入)
www.sina.com.cn                                        #键入内容(标准输入)
www.google.com                                        #键入内容(标准输入)

//结果不在标准输出显示,而是发送至 Elasticsearch 中,可浏览器访问 http://192.168.80.10:9100/ 查看索引信息和数据浏览。

 

6.定义 logstash配置文件
Logstash 配置文件基本由三部分组成:input、output 以及 filter(可选,根据需要选择使用)。
●input:表示从数据源采集数据,常见的数据源如Kafka、日志文件等
file   beats   kafka   redis   stdin

●filter:表示数据处理层,包括对数据进行格式化处理、数据类型转换、数据过滤等,支持正则表达式
grok       对若干个大文本字段进行再分割成一些小字段   (?<字段名>正则表达式)   字段名: 正则表达式匹配到的内容
date       对数据中的时间格式进行统一和格式化
mutate     对一些无用的字段进行剔除,或增加字段
mutiline   对多行数据进行统一编排,多行合并或拆分

●output:表示将Logstash收集的数据经由过滤器处理之后输出到Elasticsearch。
elasticsearch   stdout 

#格式如下:
input {...}
filter {...}
output {...}

#在每个部分中,也可以指定多个访问方式。例如,若要指定两个日志来源文件,则格式如下:
input {
    file { path =>"/var/log/messages" type =>"syslog"}
    file { path =>"/var/log/httpd/access.log" type =>"apache"}
}

#修改 Logstash 配置文件,让其收集系统日志/var/log/messages,并将其输出到 elasticsearch 中。
chmod +r /var/log/messages                    #让 Logstash 可以读取日志

cd /etc/logstash/conf.d/
vim system.conf
input {
    file{
        path =>"/var/log/messages"
        type =>"system"
        start_position =>"beginning"
        # ignore_older => 604800
        sincedb_path => "/etc/logstash/sincedb_path/log_progress"
        add_field => {"log_hostname"=>"${HOSTNAME}"}
    }
}
#path表示要收集的日志的文件位置
#type是输入ES时给结果增加一个叫type的属性字段
#start_position可以设置为beginning或者end,beginning表示从头开始读取文件,end表示读取最新的,这个要和ignore_older一起使用
#ignore_older表示了针对多久的文件进行监控,默认一天,单位为秒,可以自己定制,比如默认只读取一天内被修改的文件
#sincedb_path表示文件读取进度的记录,每行表示一个文件,每行有两个数字,第一个表示文件的inode,第二个表示文件读取到的位置(byteoffset)。默认为$HOME/.sincedb*
#add_field增加属性。这里使用了${HOSTNAME},即本机的环境变量,如果要使用本机的环境变量,那么需要在启动命令上加--alow-env

output {
    elasticsearch {                                                #输出到 elasticsearch
        hosts => ["192.168.80.10:9200","192.168.80.11:9200"]    #指定 elasticsearch 服务器的地址和端口
        index =>"system-%{+YYYY.MM.dd}"                            #指定输出到 elasticsearch 的索引格式
    }
}

mkdir /etc/logstash/sincedb_path/
touch /etc/logstash/sincedb_path/log_progress
chown logstash:logstash /etc/logstash/sincedb_path/log_progress

logstash -f system.conf

 

浏览器访问 http://192.168.179.20:9100/ 查看索引信息

 


---------------------- ELK Kiabana 部署(在 Node1 节点上操作) -------------------------------

1.安装 Kiabana
#上传软件包 kibana-6.7.2-x86_64.rpm 到/opt目录
cd /opt
rpm -ivh kibana-6.7.2-x86_64.rpm

2.设置 Kibana 的主配置文件
vim /etc/kibana/kibana.yml
--2--取消注释,Kiabana 服务的默认监听端口为5601
server.port: 5601
--7--取消注释,设置 Kiabana 的监听地址,0.0.0.0代表所有地址
server.host: "0.0.0.0"
--28--取消注释,配置es服务器的ip,如果是集群则配置该集群中master节点的ip
elasticsearch.url:  ["http://192.168.80.10:9200","http://192.168.80.11:9200"] 
--37--取消注释,设置在 elasticsearch 中添加.kibana索引
kibana.index: ".kibana"
--96--取消注释,配置kibana的日志文件路径(需手动创建),不然默认是messages里记录日志
logging.dest: /var/log/kibana.log

3.创建日志文件,启动 Kibana 服务
touch /var/log/kibana.log
chown kibana:kibana /var/log/kibana.log

systemctl start kibana.service
systemctl enable kibana.service

netstat -natp | grep 5601

4.验证 Kibana
浏览器访问 http://192.168.179.20:5601

要稍微等一小会,否则会出现 kibana not ready yet 还没准备好


第一次登录需要添加一个 Elasticsearch 索引:
Management -> Index Pattern -> Create index pattern
Index pattern 输入:system-*    #在索引名中输入之前配置的 Output 前缀“system”

 

Next step -> Time Filter field name 选择 @timestamp -> Create index pattern

单击 “Discover” 按钮可查看图表信息及日志信息。
数据展示可以分类显示,在“Available Fields”中的“host”,然后单击 “add”按钮,可以看到按照“host”筛选后的结果

 

 5.将 Apache 服务器的日志(访问的、错误的)添加到 Elasticsearch 并通过 Kibana 显示
vim /etc/logstash/conf.d/apache_log.conf
input {
    file{
        path => "/etc/httpd/logs/access_log"
        type => "access"
        start_position => "beginning"
    }
    file{
        path => "/etc/httpd/logs/error_log"
        type => "error"
        start_position => "beginning"
    }
}
output {
    if [type] == "access" {
        elasticsearch {
            hosts => ["192.168.80.10:9200","192.168.80.11:9200"]
            index => "apache_access-%{+YYYY.MM.dd}"
        }
    }
    if [type] == "error" {
        elasticsearch {
            hosts => ["192.168.80.10:9200","192.168.80.11:9200"]
            index => "apache_error-%{+YYYY.MM.dd}"
        }
    }
}

cd /etc/logstash/conf.d/
/usr/share/logstash/bin/logstash -f apache_log.conf

浏览器访问 http://192.168.179.20:9100 查看索引是否创建

 

浏览器访问 http://192.168.179.20:5601 登录 Kibana,单击“Index Pattern -> Create Index Pattern”按钮添加索引, 在索引名中输入之前配置的 Output 前缀 apache_access-*,并单击“Create”按钮。在用相同的方法添加 apache_error-*索引。
选择“Discover”选项卡,在中间下拉列表中选择刚添加的 apache_access-* 、apache_error-* 索引, 可以查看相应的图表及日志信息。

---------------------- Filebeat+ELK 部署 ----------------------
Node1节点(2C/4G):node1/192.168.179.20                    Elasticsearch
Node2节点(2C/4G):node2/192.168.179.23                    Elasticsearch
Apache节点:apache/192.168.179.25                        Logstash  Kibana  Apache
Filebeat节点:filebeat/192.168.179.20                    Filebeat

//在 Node1 节点上操作
1.安装 Filebeat
#上传软件包 filebeat-6.7.2-linux-x86_64.tar.gz 到/opt目录
tar zxvf filebeat-6.7.2-linux-x86_64.tar.gz
mv filebeat-6.7.2-linux-x86_64/ /usr/local/filebeat


2.设置 filebeat 的主配置文件
cd /usr/local/filebeat

vim filebeat.yml
filebeat.inputs:
- type: log         #指定 log 类型,从日志文件中读取消息
  enabled: true
  paths:
    - /var/log/messages       #指定监控的日志文件
    - /var/log/*.log
  tags: ["sys"]        #设置索引标签
  fields:           #可以使用 fields 配置选项设置一些参数字段添加到 output 中
    service_name: filebeat
    log_type: syslog
    from: 192.168.80.13

--------------Elasticsearch output-------------------
(全部注释掉)

----------------Logstash output---------------------
output.logstash:
  hosts: ["192.168.80.12:5044"]      #指定 logstash 的 IP 和端口

#启动 filebeat
nohup ./filebeat -e -c filebeat.yml > filebeat.out &
#-e:输出到标准输出,禁用syslog/文件输出
#-c:指定配置文件
#nohup:在系统后台不挂断地运行命令,退出终端不会影响程序的运行

4.在 Logstash 组件所在节点上新建一个 Logstash 配置文件
cd /etc/logstash/conf.d

vim filebeat.conf
input {
    beats {
        port => "5044"
    }
}

#filebeat发送给logstash的日志内容会放到message字段里面,logstash使用grok插件正则匹配message字段内容进行字段分割
#Kibana自带grok的正则匹配的工具:http://<your kibana IP>:5601/app/kibana#/dev_tools/grokdebugger
# %{IPV6}|%{IPV4} 为 logstash 自带的 IP 常量
filter {
  grok {
    match => ["message", "(?<remote_addr>%{IPV6}|%{IPV4})[\s\-]+\[(?<logTime>.*)\]\s+\"(?<method>\S+)\s+(?<url_path>.+)\"\s+(?<rev_code>\d+) \d+ \"(?<req_addr>.+)\" \"(?<content>.*)\""]
  }
}

output {
    elasticsearch {
        hosts => ["192.168.80.10:9200","192.168.80.11:9200"]
        index => "%{[fields][service_name]}-%{+YYYY.MM.dd}"
    }
    stdout {
        codec => rubydebug
    }
}

#启动 logstash
logstash -f filebeat.conf


5.浏览器访问 http://192.168.80.10:5601 登录 Kibana,单击“Create Index Pattern”按钮添加索引“filebeat-*”,单击 “create” 按钮创建,单击 “Discover” 按钮可查看图表信息及日志信息。


 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/22713.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

1123 Is It a Complete AVL Tree (PAT甲级)

这道题是看了柳婼的解法才搞定的。开始想着把height和parent放到结构体中去&#xff0c;很繁琐最后还搞不定…… #include <cstdio> #include <algorithm> #include <vector>struct node{int key;node* left nullptr;node* right nullptr; };int N, t, pi…

一文打通File类

目录 基本概述 常用构造器 构造方法 路径分隔符 常用方法 File类的获取功能 File类的重命名功能 File类的判断功能 File类的创建功能 File类的删除功能 在 Java 中&#xff0c;File 类是 java.io 包中唯一代表磁盘文件本身的对象&#xff0c;也就是说&#xff0c;如果…

2023/5/21总结

因为之前高中学过一点点的html。虽然不是很多&#xff0c;但是有一点点基础&#xff0c;看了一些关于html的知识点&#xff0c;算是复习了&#xff0c;如果后面忘记打算再去查。 html是超文本标记语言&#xff0c;通常由<></>构成&#xff0c;当然也有单标记&…

Cisco Secure Web Appliance Virtual 15.0 发布 - 适用于网络安全的思科高级威胁防护

Cisco Secure Web Appliance Virtual, AsyncOS for WSA 15.0.0 LD 请访问原文链接&#xff1a;https://sysin.org/blog/cisco-secure-web-appliance-15/&#xff0c;查看最新版。原创作品&#xff0c;转载请保留出处。 作者主页&#xff1a;sysin.org Cisco Secure Web Appli…

游资92科比到底牛在哪里?

昨天一天时间把92科比之前的一个帖子全部看完&#xff0c;从科比对情绪周期的把握来看那简直总结的已经是标准答案了&#xff0c;那么为何92科比公布了答案&#xff0c;还是有很多人“痛苦”的做不到&#xff1f; 这个问题我觉得跟退学炒股是一样的&#xff0c;退学先解决了小…

关于Jetpack DataStore(Preferences)的八点疑问

前言 DataStore是Android上一种轻量级存储方案&#xff0c;依据官方教程很容易就写出简易的Demo。 本篇主要是分析关于DataStore(Preferences)使用过程中的一些问题&#xff0c;通过问题寻找本质&#xff0c;反过来能更好地指导我们合理使用DataStore。 本篇内容目录&#xff…

Maven基础学习---5、其他核心概念

1、生命周期 1、作用 为了让构建过程自动化完成&#xff0c;Maven设定了三个生命周期。生命周期中的每一个环节对应构建过程中的一个操作。 2、三个生命周期 3、特点 前面三个生命周期彼此都是独立的在任何一个生命周期内部&#xff0c;执行任何一个具体环节的操作&#xff…

GC 三色标记算法(Go Java版本)

一、前言 GC全称Garbage Collection&#xff0c;目前主流的垃圾回收算法有两类&#xff0c;分别是追踪式垃圾回收算法&#xff08;Tracing garbage collection&#xff09;和引用计数法&#xff08; Reference counting &#xff09;。 而三色标记法是属于追踪式垃圾回收算法…

我出版了一本关于TikTok电商运营的书

回首2020年初&#xff0c;第一次在手机上下载TikTok的那个下午&#xff0c;我并没有意识到&#xff0c;未来三年多这个词会充满我的工作与生活。 那其实是非常幸福的一段时间&#xff0c;对TikTok的期待没有那么功利&#xff0c;每天刷一刷TikTok中的视频&#xff0c;再随手拍…

车辆合格证怎么转为结构化excel数据?

一、为何要将车辆合格证转为结构化excel&#xff1f; 车辆合格证是在车辆制造完成后&#xff0c;经过各项检测合格的证明。对于车辆行业来说&#xff0c;车辆合格证是一种重要的合规证明&#xff0c;在车辆的生产制造、售后服务、质量管理等各个环节中都有着重要的作用。同时&…

git pull报没有足够内存 not enough memory for initialization

git clone 或 git pull 批量同步远程 git仓库代码时&#xff0c;报 没有足够内存用于初始化 not enough memory for initialization。经过观察 资源管理器 的内存使用情况&#xff0c;发现为 剩余可用内存不足造成的。加物理内存麻烦&#xff0c;可通过适当调整 分页文件&…

软考知识点---08IP地址与域名地址

&#x1f4e2;博客主页&#xff1a;盾山狂热粉的博客_CSDN博客-C、C语言,机器视觉领域博主&#x1f4e2;努力努力再努力嗷~~~✨ 一、IP地址 &#xff08;一&#xff09;什么是IP地址&#xff1f; 连入互联网的计算机&#xff0c;每台计算机或者路由器都有一个由授权机构分配的…

煤矿电子封条实施方案 yolov7

煤矿电子封条实施方案采用YOLOv7网络模型算法技术&#xff0c;煤矿电子封条实施算法模型过将全国各省矿山实时监测数据&#xff0c;实现对全国各矿山及时有效的处理及分析。YOLOv7 的发展方向与当前主流的实时目标检测器不同&#xff0c;研究团队希望它能够同时支持移动 GPU 和…

零入门kubernetes网络实战-33->基于nat+brigde+veth pair形成的跨主机的内网通信方案

《零入门kubernetes网络实战》视频专栏地址 https://www.ixigua.com/7193641905282875942 本篇文章视频地址(稍后上传) 本文主要使用的技术是 nat技术Linux虚拟网桥虚拟网络设备veth pair来实现跨主机网桥的通信 1、测试环境介绍 两台centos虚拟机 # 查看操作系统版本 cat …

Unity3D安装:从命令行安装 Unity

推荐&#xff1a;将 NSDT场景编辑器 加入你的3D工具链 3D工具集&#xff1a; NSDT简石数字孪生 从命令行安装 Unity 如果要在组织中自动部署 Unity&#xff0c;可以从命令行安装 Editor 和其他组件。这些组件是普通的安装程序可执行程序和软件包&#xff0c;可以给用来自动部署…

圣墟传说H5手工端搭建架设教程

圣墟传说H5手工端搭建架设教程 大家好&#xff0c;我是艾西。今天给大家带来的游戏是由小说改编而来的大型玄幻MMORPG仙侠手游&#xff0c;也是比较老的游戏了虽然你可能没有怎么听过&#xff0c;但总会有一批喜欢的玩家热衷于它。 那么让我们直接进入正题开始操作&#xff1…

【状态估计】电力系统状态估计的虚假数据注入攻击建模与对策(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

云原生|Kubernetes Operator测试实例

目录 一、主要代码介绍 &#xff08;一&#xff09;变量定义&#xff1a; &#xff08;二&#xff09;测试程序入口 &#xff08;三&#xff09;before函数 &#xff08;四&#xff09;after函数 二、实际测试 &#xff08;一&#xff09;块划分 &#xff08;二&#x…

原神服务端搭建架设Centos系统

原神服务端搭建架设Centos系统 我是艾西&#xff0c;今天为大家带来原神服务端centos系统的教程 Step1. 准备工具 这个端在Windows、Linux系统上都可以跑&#xff0c;本次教程基于Linux。 准备如下工具&#xff1a; 服务器1台 centos7 系统 最低配置32核32G 公网联机 2. 手…

动态规划问题实验:数塔问题

目录 前言实验内容实验流程实验过程实验分析伪代码代码实现分析算法复杂度用例测试 总结 前言 动态规划是一种解决复杂问题的方法&#xff0c;它将一个问题分解为若干个子问题&#xff0c;然后从最简单的子问题开始求解&#xff0c;逐步推导出更复杂的子问题的解&#xff0c;最…