C++STL的string类(一)

文章目录

  • 前言
    • C语言的字符串
  • string
  • string类的常用接口
    • string类的常见构造
      • string (const string& str);
      • string (const string& str, size_t pos, size_t len = npos);
    • capacity
      • size和length
      • reserve
      • resize
        • resize可以删除数据
    • modify
      • 尾插
        • 插入字符
        • 插入字符串
      • insert
      • erase
      • replace
    • 迭代器
      • swap
      • c_str
      • find
    • 反向迭代器
    • const迭代器
    • auto

前言

无论c++还是c语言,字符串都是最常见的类之一。我们日常当中写的程序必然要存储数据。
我们的内置类型只能表示基础的信息,无法表示一些复杂的信息,比如int, double.但我们要表示身份证、住址那就表示不了了。

C语言的字符串

C语言用字符数组来表示字符串,但是这里有一个巨大的缺陷。

1.不够好用
2.不能够很好的管理
比如:用字符数组来存储地址,但是地址的长度要修改呢?这就很麻烦。

所以c++提供了一个管理字符串的一个类,string,你可以把它想象成存储字符的顺序表。

string

string是一个类模板,它是typedef出来的。
在这里插入图片描述

string的底层是一个字符数组,但是你可以把它想象成可以增删查改的数组。

string类的常用接口

string类的常见构造

string (const string& str);

#include <string>
int main()
{
	string s2("hello world");
	for (size_t i = 0; i < s2.size(); ++i)
	{
		s2[i]++;
	}

	cout << s2 << endl;

	for (size_t i = 0; i < s2.size(); ++i)
	{
		cout << s2[i] << " ";
	}
	cout << endl;
	return 0;
}

在这里插入图片描述

为什么可以这样构造?

string s1="hello world";

本质是类型转换,把const char* 转换成string.
它是先构造再拷贝构造,然后优化成了构造。

string (const string& str, size_t pos, size_t len = npos);

int main()
{
	string s3 = "hello world";
	string s4(s3, 6, 3);
	cout << s4 << endl;
	
	string s5(s3, 6, 13);//如果字符不够,有多少取多好
	cout << s5 << endl;
	return 0;
}

在这里插入图片描述
** 如果第三个参数不给呢?**

string s6(s3, 6);

这里给了一个参数,npos,并且npos=-1;
-1代表什么,这里其实是无符号,所以-1表示42亿九千万。
npos很大意味着取到结束

capacity

容量没有把’\0’算进去。

size和length

size和length有什么差异?

int main()
{
	string s3 = "hello world";
	cout << s3.size() << endl;
	cout << s3.length() << endl;
	return 0;
}

没有什么差异。

** 那为什么同时会有这两个东西呢?**
跟STL的发展历史有关。平时用size就可以了。

reserve

** 观察vs编译器的扩容情况**
在这里插入图片描述

** 那假如我知道要开多少空间呢?**
我们可以调用这样一个接口,reserve
知道需要开多少空间,提前开空间,减少扩容,提高效率。

s.reserve(100)

注意,你要100的空间,它不一定给你100的空间,它可能为了一些对齐等等的原因,可能开的比100大一些。

resize

resize和reserve功能相似,但也有很大区别。
resize除了开空间它还帮助初始化

int main()
{
	string s1;
	s1.reserve(100);
	cout << sizeof(s1) << endl;
	cout << s1.size() << endl;
	cout << "--------------" << endl;
	string s2;
	s2.resize(100);
	cout << sizeof(s2) << endl;
	cout << s2.size() << endl;
	return 0;
}

在这里插入图片描述

那初始化填了什么值呢?
填的是0;

那我想填其他的值怎么办呢?
比size小,删除数据,保留前5个

s2.resize(100, 'x');

但是它不会缩容。

这里提一个点,为什么编译器不会轻易的缩容?
缩容其实是不支持原地缩的,原地缩荣的话,那以为这要delete一部分空间,这增加了内存管理的难度。
真正缩荣都是开好另一块空间,然后将需要保留的数据拷贝过去。这也意味着缩容肯定会带来性能上的消耗。一般来说不要轻易的缩容。

resize可以删除数据
s2.resize(5);

modify

string 最好用的地方就是不用去管空间。

尾插

插入字符
int main()
{
	string s3 = "hello world";
	s3.push_back(' ');
	s3.push_back('!');
	return 0;
}
插入字符串
s3.append("bit");

但是我们不管是插入字符还是插入字符串都不喜欢这样写,我们喜欢用运算符重载+=;

s3+=' ';
s3+='!';

s3+='bit';

不过+=底层还是调用了push_back和append.

insert

如果我们再头部或者中间插入一个数据,我们就可以用insert;

int main()
{
	string s1("world");
	s1.insert(0, "hello");
	cout << s1 << endl;
	return 0;
}

在这里插入图片描述

中间插入

int main()
{
	string s1("world");
	s1.insert(0, "hello");

	//s1.insert(5, 1, ' ');
	//s1.insert(5, " ");
	s1.insert(s1.begin() + 5, ' ');//迭代器位置
	cout << s1 << endl;
	return 0;
}

在这里插入图片描述

不推荐经常使用,能不用就不用。因为要挪动数据,影响性能。

erase

删除一个字符

int main()
{
	string s2("hello world");
	//s2.erase(5, 1);
	s2.erase(s2.begin() + 5);//迭代器位置
	cout << s2 << endl;
	return 0;
}

在这里插入图片描述

删除多个字符

int main()
{
	string s2("hello world");
	//s2.erase(5, 30);//如果要删除的数据大于字符串的剩余长度,那就相当于全部删完
	s2.erase(5);
	cout << s2 << endl;
	return 0;
}

在这里插入图片描述

不推荐经常使用,能不用就不用。因为要挪动数据,影响性能。

replace

将hello world 中间空格,替换成%%d

string s1("hello world");
s1.replace(5, 1, "%%d");

replace 能不用就不用,为什么?

1.空间不够就要扩容
2.需要挪动数据

有个题目,把hello world i love you 中的所有空格替换成%20

int main()
{
	string s1("hello world i love you");
	size_t pos = s1.find(' ');
	while (pos != string::npos)
	{
		s1.replace(pos, 1,"%20");
		 pos = s1.find(' ');
	}
	cout << s1 << endl;
	return 0;
}

在这里插入图片描述

那上面的代码能不能优化一下呢?
每次都是从0的位置开始找,其实没必要。
还有一个点就是,replace可能会扩容。

int main()
{
	string s1("hello world i love you");
	size_t num = 0;
	//计算有多少个' ',为开空间做准备
	for (auto ch : s1)
	{
		if (ch == ' ')
			++num;
	}
	// 提前开空间,避免repalce时扩容
	s1.reserve(s1.size() + 2 * num);

	size_t pos = s1.find(' ');
	while (pos != string::npos)
	{
		s1.replace(pos, 1, "%20");
		pos = s1.find(' ', pos + 3);
	}
	cout << s1 << endl;
	return 0;
}

再给大家看个好玩的东西

int main()
{
	string s1("hello world i love you");
		string newStr;
		size_t num = 0;
		for (auto ch : s1)
		{
			if (ch == ' ')
				++num;
		}
		// 提前开空间,避免repalce时扩容
		newStr.reserve(s1.size() + 2 * num);
	
		for (auto ch : s1)
		{
			if (ch != ' ')
				newStr += ch;
			else
				newStr += "%20";
		}
	
		s1 = newStr;
		cout << newStr << endl;
	return 0;
}

在这里插入图片描述

这个是以空间换时间的方式,不需要挪动数据。

迭代器

如果不用[]加下标怎么访问string对象呢,这里要用到迭代器。

int main()
{
	string s1("hello world");
	string::iterator it = s1.begin();
	while (it != s1.end())
	{
		cout << *it << " ";
		++it;
	}
	cout << endl;
	return 0;
}

这个代码看起来有点懵,可以暂时先把迭代器理解为指针。
在这里插入图片描述

bein()表示第一个字符的地址,end()表示最后一个字符下一个位置的地址。
它是左闭右开。

其实还可以用范围for来访问,不过范围for的底层原理还是迭代器

for (auto ch : s1)
{
	cout << ch << " ";
}
cout << endl;

swap

看下面的代码有什么区别?

int main()
{
	string s1("hello world");
	string s2("xxxxx");
	s1.swap(s2);
	cout << s1 << endl;
	cout << s2 << endl;
	cout << "------------" << endl;
	swap(s1, s2);
	cout << s1 << endl;
	cout << s2 << endl;
	return 0;
}

s1.swap()和swap()有什么区别?
我们知道swap()是类模板,所有类型都可以交换,是泛型模板。

s1.swap()和swap()谁的效率高?
很明显s1.swap()的效率更高,s1和s2两段空间,只需要交换两段空间指针的指向就可以了。
而swap()要产生一个临时对象,需要调用拷贝构造,还是深拷贝,然后又需要两次赋值。

c_str

int main()
{
	string s1("hello world");
	cout << s1 << endl;
	cout << s1.c_str() << endl;
	return 0;
}

两者都可以打印数据,那它们的区别是什么?
s1.c_str()是遇到‘\0’结束,而cout << s1 << endl;则是根据s1.size()来打印的。

c_str的主要作用还是,为c的接口提供兼容

find

find其实前面已经见过了,再看一个例子,怎样取文件名的后缀。

int main()
{
	string file("string.cpp");
	size_t pos = file.find('.');
	if (pos != string::npos)//npos是静态成员变量,所以可以这样写,直接加上类域
	{
		string suffix = file.substr(pos, file.size() - pos);//substr表示从某个位置开始,取len字符长度的字符串
		string suffix = file.substr(pos);
		cout << suffix << endl;
	}
	return 0;
}

在这里插入图片描述

如果文件有多个点怎么样找后缀?
倒着找

size_t pos = file.rfind('.');

反向迭代器

除了正着访问string,还可以反着访问,这里要用到反向迭代器。

int main()
{
	string s1("hello world");
	string::reverse_iterator rit = s1.rbegin();
	while (rit != s1.rend())
	{
		cout << *rit << " ";
		++rit;
	}
	return 0;
}

在这里插入图片描述

在这里插入图片描述

const迭代器

写成这样为什么会报错?

void Func(const string& s)
{
	// 遍历和读容器的数据,不能写
	string::iterator it = s.begin();//报错这里赋值不过去
	while (it != s.end())
	{
		//*it += 1;
		cout << *it << " ";
		++it;
	}
	cout << endl;
}
int main()
{	
	string s1("hello world");
	Func(s1);
	return 0;
}

在这里插入图片描述
有两个版本,const对象返回const对象,普通对象返回普通对象。
所以很显然,应该改成const迭代器

string::const_iterator it = s.begin();//只能遍历和读取容器的数据,不能写

为什么要有返回const的迭代器呢?
不允许被修改。

普通迭代器和 const迭代器的区别?
能不能写的问题。

auto

正向的普通迭代器和const迭代器一共就有4种,我们可以用auto来优化一下迭代器的写法。

auto it = s.begin();

不过它也有一个弊端,降低了程序的可读性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/226247.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

模电笔记。。。。

模电 2.8 蜂鸣器 按照蜂鸣器驱动方式分为有源蜂鸣器和无源蜂鸣器 有源的有自己的震荡电路&#xff0c;无源的要写代码控制。 里面有个线圈&#xff0c;相当于电感&#xff0c;储能&#xff0c;通直隔交。 蜂鸣器的参数&#xff1a;额定电压&#xff0c;工作电压&#xff0…

深入理解mysql的explain命令

1 基础 全网最全 | MySQL EXPLAIN 完全解读 1.1 MySQL中EXPLAIN命令提供的字段包括&#xff1a; id&#xff1a;查询的标识符。select_type&#xff1a;查询的类型&#xff08;如SIMPLE, PRIMARY, SUBQUERY等&#xff09;。table&#xff1a;查询的是哪个表。partitions&…

【算法每日一练]-结构优化(保姆级教程 篇4 树状数组,线段树,分块模板篇)

除了基础的前缀和&#xff0c;后面还有树状数组&#xff0c;线段树&#xff0c;分块的结构优化。 目录 分块 分块算法步骤&#xff1a; 树状数组 树状数组步骤&#xff1a; 线段树点更新 点更新步骤&#xff1a; 线段树区间更新 区间更新步骤&#xff1a; 分块 分块算…

【wvp】测试记录

ffmpeg 这是个莫名其妙的报错&#xff0c;通过排查&#xff0c;应该是zlm哪个进程引起的 会议室的性能 网络IO也就20M

业绩超预期,股价却暴跌,MongoDB股票还值得投资吗?

来源&#xff1a;猛兽财经 作者&#xff1a;猛兽财经 尽管MongoDB(MDB)本季度的财报超出了预期&#xff0c;并提高了全年预期&#xff0c;但它的股价在财报发布后还是出现了暴跌。 MongoDB截至2023年10月31日的第三财季&#xff0c;收入同比增长了30%&#xff0c;达到了4.329亿…

各大电商平台商品详情API调用(API接口)、淘宝API、京东API、拼多多API、1688API文档案例演示

电商API接口的作用主要表现在以下几个方面&#xff1a; 数据支持&#xff1a;通过开放API接口&#xff0c;其他软件、应用、网站等可以访问电商平台的数据库和功能&#xff0c;利用这些数据提供更丰富的功能和更好的服务。例如&#xff0c;API接口可以收集用户的购物记录、搜索…

第二十一章总结。。

计算机网络实现了堕胎计算机间的互联&#xff0c;使得它们彼此之间能够进行数据交流。网络应用程序就是再已连接的不同计算机上运行的程序&#xff0c;这些程序借助于网络协议&#xff0c;相互之间可以交换数据&#xff0c;编写网络应用程序前&#xff0c;首先必须明确网络协议…

状态机的练习:按键控制led灯

设计思路&#xff1a; 三个按键控制led输出。 三个按键经过滤波(消抖)&#xff0c;产生三个按键标志信号。 三个led数据的产生模块&#xff08;流水&#xff0c;跑马&#xff0c;闪烁模块&#xff09;&#xff0c;分别产生led信号。 这六路信号&#xff08;三路按键信号&am…

4种常见的限流算法

限流算法 1、固定窗口 含义&#xff1a; 在一个固定长度的时间窗口内限制请求数量&#xff0c;每来一个请求&#xff0c;请求次数加一&#xff0c;如果请求数量超过最大限制&#xff0c;就拒绝该请求 优点&#xff1a; 实现简单&#xff0c;容易理解。 缺点&#xff1a; ①限流…

Ngxin实现301重定向映射

要实现将abc.love域名映射到http://baidu.com网站&#xff0c;并进行重定向&#xff0c;你需要在Nginx的配置文件中添加一个新的server块&#xff0c;如下所示&#xff1a; server {listen 80;server_name abc.com; #替换成自己的域名&#xff0c;记得要映射到这台服务器&…

element UI改写时间线组件为左右分布

2023.12.4今天我学习了如何使用element的时间线组件&#xff0c;效果如&#xff1a; 代码如下&#xff1a;&#xff08;关键代码 v-if"item.send_type"&#xff09;判断左右分布情况。因为如果没有这个判断的话&#xff0c;其实会两边都有显示。可以用一个判断表示0显…

OpenEuler_22.03升级mongdb到7.0.4

使用命令&#xff1a;lscpu&#xff0c;查看cpu架构为aarch64为arm架构的一种执行状态。 所以我们直接下载arm的包安装即可。无需自己编译源码。 下载地址&#xff1a;https://www.mongodb.com/try/download/community 下载解压 wget https://fastdl.mongodb.org/linux/mong…

使用腾讯逆地理位置编码获取地理位置信息

文章目录 前言一、代码二、开放平台操作步骤1.开发者认证2.创建应用 总结 前言 最近项目中一个发帖的功能需要获取当前用户的发帖位置&#xff0c;由于是在APP内部使用&#xff0c;而且APP是使用uniApp开发的&#xff0c;所以在使用开放平台的SDK选用上有些麻烦&#xff0c;有…

echarts环形饼图

效果示例 代码汇总 pieCharts() {let data [];const providerResult [{name: 智诺, value: 23},{name: 海康, value: 5},{name: 大华, value: 5}, {name: 云科, value: 23},{name: 四信, value: 22},{name: 九物, value: 22}]let charts echarts.init(document.getElemen…

11K+ Star!图解计算机网络、操作系统、计算机组成、数据库!

大家好&#xff0c;我是 Java陈序员。 俗话说得好&#xff0c;面试造火箭&#xff0c;入职拧螺丝。我们在工作中&#xff0c;其实很少用到一些计算机底层知识&#xff0c;往往只要编码完事。但是&#xff0c;知其然还要知其所以然&#xff0c;我们不仅要做一个合格的“CV 工程…

Vector Quantized Diffusion Model for Text-to-Image Synthesis

Vector Quantized Diffusion Model for Text-to-Image Synthesis Shuyang Gu, University of Science and Technology of China, Microsoft, CVPR2022, Cited: 340, Code, Paper 1. 前言 我们提出了用于文本到图像生成的矢量量化扩散(Vector Quantized Diffusion Model&…

JavaScript如何实现按键音效、视频播放,标签分类切换横向滚动

1.使用HTML5的audio标签 &#xff08;音频播放&#xff09; <audio id"click-sound"><source src"audio/show.mp3" type"audio/mpeg"> </audio> <button id"button">按钮</button> var clickSound d…

北京市经信局局长姜广智带队调研三六零 强调大模型应与行业结合

12月6日&#xff0c;北京市经济和信息化局局长姜广智、副局长王磊带队走访调研三六零集团&#xff0c;就共促城市级数字安全基础设施项目落地&#xff0c;打造引领行业发展标杆项目&#xff0c;推动大模型落地应用赋能产业、行业发展等话题进行交流。360集团创始人周鸿祎接待来…

【FPGA】Quartus18.1打包封装网表文件(.qxp)详细教程

当我们在做项目的过程中&#xff0c;编写的底层Verilog代码不想交给甲方时怎么办呢&#xff1f;此时可以将源代码打包封装成网表文件&#xff08;.qxp&#xff09;进行加密&#xff0c;并且在工程中进行调用。 Quartus II的.qxp文件为QuartusII Exported Partition&#xff0c;…

探索 Linux Namespace:Docker 隔离的神奇背后

来自&#xff1a;探索云原生 https://www.lixueduan.com 原文&#xff1a;https://www.lixueduan.com/posts/docker/03-container-core/ 在 深入理解 Docker 核心原理&#xff1a;Namespace、Cgroups 和 Rootfs 一文中我们分析了 Docker 是由三大核心技术实现的。 今天就一起分…