C++ vector基本操作

目录

一、介绍

二、定义

三、迭代器

四、容量操作

1、size

2、capacity

3、empty

4、resize

5、reserve

总结(扩容机制)

五、增删查改

1、push_back & pop_back

2、find

3、insert

4、erase

5、swap

6、operator[]


一、介绍

vector的文档介绍

  1. vector是表示可变大小数组的序列容器。
  2. 就像数组一样,vector也采用的连续存储空间来存储元素。也就是意味着可以采用下标对vector的元素进行访问,和数组一样高效。但是又不像数组,它的大小是可以动态改变的,而且它的大小会被容器自动处理。
  3. 本质讲,vector使用动态分配数组来存储它的元素。当新元素插入时候,这个数组需要被重新分配大小为了增加存储空间。其做法是,分配一个新的数组,然后将全部元素移到这个数组。就时间而言,这是一个相对代价高的任务,因为每当一个新的元素加入到容器的时候,vector并不会每次都重新分配大小。
  4. vector分配空间策略:vector会分配一些额外的空间以适应可能的增长,因为存储空间比实际需要的存储空间更大。不同的库采用不同的策略权衡空间的使用和重新分配。但是无论如何,重新分配都应该是对数增长的间隔大小,以至于在末尾插入一个元素的时候是在常数时间的复杂度完成的。
  5. 因此,vector占用了更多的存储空间,为了获得管理存储空间的能力,并且以一种有效的方式动态增长。
  6. 与其它动态序列容器相比(deque, list and forward_list), vector在访问元素的时候更加高效,在末尾添加和删除元素相对高效。对于其它不在末尾的删除和插入操作,效率更低。比起list和forward_list统一的迭代器和引用更好。

vector的使用

vector学习时一定要学会查看文档:vector的文档介绍,vector在实际中非常的重要,在实际中我们熟悉常见的接口就可以。

二、定义

这些是C++标准库中`vector`类的构造函数的不同重载形式。下面是对每个构造函数的解释:

1. 无参构造函数:`vector()` 

vector<int> v;
  • 创建一个空的`vector`对象,不包含任何元素。

2. 构造并初始化n个val:`vector(size_type n, const value_type& val = value_type())`

vector<int> v1(10, 1);
  • 创建一个包含`n`个元素的`vector`对象,每个元素都初始化为`val`。
  • 可以选择提供一个初始值`val`,如果未提供,则使用默认值类型的默认构造函数进行初始化。

3. 使用迭代器进行初始化构造 :`vector(InputIterator first, InputIterator last)`

string s1("hello");
vector<char> v3(s1.begin(), s1.end());
  • 创建一个`vector`对象,并使用范围 `[first, last)` 内的元素进行初始化。
  • `first` 和 `last` 是迭代器,指定了要复制的元素范围。
  • 这个构造函数允许使用迭代器来指定要复制的元素范围,可以是数组、容器或其他可迭代对象。

4. 拷贝构造函数:`vector(const vector& x)` 重点

vector<int>v1(v);
  • 创建一个新的`vector`对象,其元素与另一个`vector`对象`x`相同。
  • 拷贝构造函数用于创建一个副本,新的`vector`对象将独立于原始对象,对其中一个对象的修改不会影响另一个对象。

举例演示一下,其中输出和string类一样,有三种方式:范围for [ ] 迭代器。

void test1()
{
	//无参构造
	vector<int> v;
	v.push_back(1);
	v.push_back(2);
	v.push_back(3);

	//三种输出方式 范围for [] 迭代器
	for (auto a : v)
	{
		cout << a << " ";
	}
	cout << endl;

	for (size_t i = 0; i < v.size(); i++)
	{
		cout << v[i] << " ";
	}
	cout << endl;

	//vector<int>::iterator it = v.begin();
	auto it = v.begin();
	while (it != v.end())
	{
		cout << *it << " ";
		++it;
	}
	cout << endl;
	
	//拷贝构造
	vector<int> copy(v);
	for (auto a : copy) 
	{
		cout << a << " ";
	}
	cout << endl;
}
void test2()
{
	//构造并初始化
	vector<int> v1(6, 6);
	for (auto a : v1)
	{
		cout << a << " ";
	}
	cout << endl;

	//迭代器
	vector<int> v2(v1.begin(), v1.end());
	for (auto b : v2)
	{
		cout << b << " ";
	}
	cout << endl;

	string s1("hello");
	vector<char> v3(s1.begin(), s1.end());
	for (auto b : v3)
	{
		cout << b << " ";
	}

}
int main()
{
	test1();
    cout << endl;
    test2();
	return 0;
}

三、迭代器

begin()/end()获取第一个数据位置的iterator / const_iterator, 获取最后一个数据的下一个位置的iterator / const_iterator

rbegin()/rend()获取最后一个数据位置的reverse_iterator,获取第一个数据前一个位置的reverse_iterator

通过使用这些接口,可以在vector中进行迭代操作。

  • 例如,使用begin()end()可以遍历vector中的元素,而使用rbegin()rend()可以反向遍历vector中的元素。
  • 请注意,对于只读的vector,应使用const_iteratorconst_reverse_iterator来确保不修改vector的元素。
void test3()
{
	vector<int> v;
	v.push_back(1);
	v.push_back(2);
	v.push_back(3);
    //正向迭代器
	vector<int>::iterator it = v.begin();
	while (it != v.end())
	{
		cout << *it << " ";
		++it;
	}
	cout << endl;
    //反向迭代器
	vector<int>::reverse_iterator rit = v.rbegin();
	while (rit != v.rend())
	{
		cout << *rit << " ";
		++rit;
	}
}
int main()
{
    test3();
    return 0;
}

四、容量操作

1、size

获取数据个数。
int main() {
    std::vector<int> v = {1, 2, 3, 4, 5};
    std::cout << "Size of vector: " << v.size() << std::endl;
    return 0;
}

2、capacity

capacity获取容量大小。
int main() {
    std::vector<int> v;
    std::cout << "Initial capacity: " << v.capacity() << std::endl;
    for (int i = 0; i < 10; i++) {
        v.push_back(i);
        std::cout << "Capacity after pushing " << i << ": " << v.capacity() << std::endl;
    }
    return 0;
}

3、empty

判断是否为空。
int main() {
    std::vector<int> v;
    std::cout << "Is vector empty? " << (v.empty() ? "Yes" : "No") << std::endl;
    v.push_back(1);
    std::cout << "Is vector empty? " << (v.empty() ? "Yes" : "No") << std::endl;
    return 0;
}

4、resize

改变vector的size。
void resize (size_type n, value_type val = value_type());
  1. 调整容器的大小,使其包含 n 个元素。
  2. 如果 n 小于当前容器大小,则内容将减少到其前 n 个元素,删除超出的元素(并销毁它们)。
  3. 如果 n 大于当前容器大小,则通过在末尾插入任意数量的元素来扩展内容,以达到 n 的大小。如果指定了 val,则新元素将初始化为 val 的副本,否则,它们将初始化值。
  4. 如果 n 也大于当前容器容量,则会自动重新分配分配的存储空间。
  5. 请注意,此函数通过插入或擦除容器中的元素来更改容器的实际内容。
int main() {
    std::vector<int> v = {1, 2, 3, 4, 5};
    v.resize(7, 100);
    for (int i : v) {
        std::cout << i << " ";
    }
    std::cout << std::endl;
    v.resize(3);
    for (int i : v) {
        std::cout << i << " ";
    }
    return 0;
}

5、reserve

改变vector的capacity。
reserve(): 这个方法更改vector的capacity。如果新的capacity大于当前的capacity,那么vector的内存将被重新分配以适应更多的元素。如果新的capacity小于当前的capacity,那么这个方法不会有任何效果。
int main() {
    std::vector<int> v;
    std::cout << "Initial capacity: " << v.capacity() << std::endl;
    v.reserve(10);
    std::cout << "Capacity after reserving: " << v.capacity() << std::endl;
    return 0;
}

总结(扩容机制)

  • capacity的代码在vs和g++下分别运行会发现,vs下capacity是按1.5倍增长的,g++是按2倍增长的
  • 这个问题经常会考察,不要固化的认为,vector增容都是2倍,具体增长多少是根据具体的需求定义的。vs是PJ版本STL,g++是SGI版本STL。
  • reserve只负责开辟空间,如果确定知道需要用多少空间,reserve可以缓解vector增容的代价缺陷问题。
  • resize在开空间的同时还会进行初始化,影响size。

通过下面代码可以观察到vector的默认扩容机制。

void TestVectorExpand()
{
	size_t sz;
	vector<int> v;
	sz = v.capacity();
	cout << "making v grow:\n";
	for (int i = 0; i < 100; ++i)
	{
		v.push_back(i);
		if (sz != v.capacity())
		{
			sz = v.capacity();
			cout << "capacity changed: " << sz << '\n';
		}
	}
}

如果已经确定vector中要存储元素大概个数,可以提前将空间设置足够就可以避免边插入边扩容导致效率低下的问题了。

void TestVectorExpandOP()
{
	vector<int> v;
	size_t sz = v.capacity();
	v.reserve(100); // 提前将容量设置好,可以避免一遍插入一遍扩容
	cout << "making bar grow:\n";
	for (int i = 0; i < 100; ++i)
	{
		v.push_back(i);
		if (sz != v.capacity())
		{
			sz = v.capacity();
			cout << "capacity changed: " << sz << '\n';
		}
	}
}

五、增删查改

1、push_back & pop_back

尾插&尾删
int main() {
	std::vector<int> v;
	v.push_back(1);
	v.push_back(2);
	v.push_back(3);
	for (int i : v) {
		std::cout << i << " ";
	}
	cout << endl;
	v.pop_back();
	for (int i : v) {
		std::cout << i << " ";
	}
	return 0;
}

2、find

  • 查找 find函数是一个算法模块中的函数,用于在vector中查找特定的元素。
  • 它需要提供要查找的元素的起始和结束位置,并返回一个指向该元素的迭代器。
  • 例如,如果有一个vector v,可以使用std::find(v.begin(), v.end(), 5)在v中查找整数5。

3、insert

  • 插入 insert函数用于在指定位置之前插入一个元素。它需要提供要插入的位置和要插入的值作为参数。
  • 例如,如果有一个vector v,可以使用v.insert(v.begin() + 2, 10)在v的第三个位置插入整数10。

4、erase

  • 删除 erase函数用于删除指定位置的元素。它需要提供要删除的位置作为参数,并返回一个指向被删除元素之后位置的迭代器。
  • 例如,如果有一个vector v,可以使用v.erase(v.begin() + 3)删除v的第四个元素。

下面这段代码演示了对vector进行插入、查找和删除操作的示例。

void test5()
{
    vector<int> v;
    v.push_back(1); // 在vector末尾插入元素1
    v.push_back(2); // 在vector末尾插入元素2
    v.push_back(3); // 在vector末尾插入元素3
    v.push_back(4); // 在vector末尾插入元素4

    for (auto e : v)
    {
        cout << e << " "; // 输出vector中的每个元素
    }
    cout << endl;
    // 在vector中查找值为2的元素
    vector<int>::iterator pos = find(v.begin(), v.end(), 2); 
    if (pos != v.end())
    {
        v.insert(pos, 20); // 在找到的位置之前插入元素20
    }

    for (auto e : v)
    {
        cout << e << " "; // 输出修改后的vector中的每个元素
    }
    cout << endl;

    pos = find(v.begin(), v.end(), 2); // 再次查找值为2的元素
    if (pos != v.end())
    {
        v.erase(pos); // 删除找到的元素
    }

    for (auto e : v)
    {
        cout << e << " "; // 输出修改后的vector中的每个元素
    }
    cout << endl;

    v.erase(v.begin()); // 删除vector的第一个元素

    for (auto e : v)
    {
        cout << e << " "; // 输出修改后的vector中的每个元素
    }
    cout << endl;
}

int main()
{
    test5();
    return 0;
}

5、swap

  • 交换 swap函数用于交换两个vector的数据空间。它需要提供另一个vector作为参数,并将当前vector的内容与参数vector的内容进行交换。
  • 例如,如果有两个vector v1和v2,可以使用v1.swap(v2)交换它们的内容。
int main() {
	std::vector<int> v1 = { 1, 2, 3 };
	std::vector<int> v2 = { 4, 5, 6 };
	v1.swap(v2);
	for (int i : v1) {
		cout << i << " ";
	}
	cout << endl;
	for (int i : v2) {
		cout << i << " ";
	}
	return 0;
}

6、operator[]

像数组一样访问

int main()
{
	vector<int> v;
	v.push_back(1);
	v.push_back(2);
	v.push_back(3);
	v.push_back(4);

	for (size_t i = 0; i < v.size(); ++i)
	{
		cout << v[i] << " ";
	}

	return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/226131.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

OpenGL ES 帧缓冲对象介绍和使用示例

一、介绍 1. 帧缓冲对象 默认情况下&#xff0c;OpenGL渲染的目标是屏幕&#xff0c;但如果你不想直接渲染到屏幕上&#xff0c;还需要对渲染结果做某些后期处理、渲染到纹理、阴影映射等操作&#xff0c;便可以使用帧缓冲对象&#xff0c;实现离屏渲染。 帧缓冲对象&#x…

Jmeter接口测试

前言&#xff1a; 本文主要针对http接口进行测试&#xff0c;使用Jmeter工具实现。 Jmter工具设计之初是用于做性能测试的&#xff0c;它在实现对各种接口的调用方面已经做的比较成熟&#xff0c;因此&#xff0c;本次直接使用Jmeter工具来完成对Http接口的测试。 1.介绍什么是…

《即时消息系统-IM核心技术》

IM 核心概念 用户&#xff1a;系统的使用者 消息&#xff1a;是指用户之间的沟通内容。通常在 IM 系统中&#xff0c;消息会有以下几类&#xff1a;文本消息、表情消息、图片消息、视频消息、文件消息等等 会话&#xff1a;通常指两个用户之间因聊天而建立起的关联 群&…

聊一聊Java中的枚举和泛型(两种强大的编程特性)

聊一聊Java中的枚举和泛型&#xff08;两种强大的编程特性&#xff09; 保持热爱&#xff0c;奔赴山海。。。。。。 Java中的枚举 在Java中&#xff0c;枚举&#xff08;Enum&#xff09;是一种特殊的数据类型&#xff0c;用于定义包含固定常量集合的数据类型。枚举类型在Jav…

猫咪瘦弱的原因是什么?适合给消瘦猫咪长肉吃的猫罐头分享

很多小猫咪吃得很多&#xff0c;但是还是很瘦&#xff0c;这让很多猫主人感到困惑&#xff0c;猫咪瘦弱的原因是什么呢&#xff1f;铲屎那么多年&#xff0c;还是有点子养猫知识在身上的。那么&#xff0c;小猫咪瘦弱的原因是什么呢&#xff1f;让我们看看是不是这些原因导致的…

LinuxBasicsForHackers笔记 -- 进程管理

进程是一个正在运行和使用资源的程序。 Linux 内核是操作系统的内核&#xff0c;几乎控制着一切&#xff0c;在创建进程时&#xff0c;它会按顺序为每个进程分配一个唯一的进程 ID (PID)。 查看进程 ps – 用于在命令行查看哪些进程处于活动状态。单独使用 ps 命令并不能真正…

使用Notepad++编辑器,安装compare比较差异插件

概述 是一款非常有特色的编辑器&#xff0c;Notepad是开源软件&#xff0c;Notepad中文版可以免费使用。 操作步骤&#xff1a; 1、在工具栏 ->“插件”选项。 2、勾选Compare选项&#xff0c;点击右上角“安装”即可。 3、 确认安装插件 4、下载插件 5、插件已安装 6、打…

微前端介绍

目录 微前端概念 微前端特性 场景演示 微前端方案 iframe 方案 qiankun 方案 micro-app 方案 EMP 方案 无界微前端 方案 无界方案 成本低 速度快 原生隔离 功能强大 总结 前言&#xff1a;微前端已经是一个非常成熟的领域了&#xff0c;但开发者不管采用哪个现…

JAVA网络编程——BIO、NIO、AIO深度解析

I/O 一直是很多Java同学难以理解的一个知识点&#xff0c;这篇帖子将会从底层原理上带你理解I/O&#xff0c;让你看清I/O相关问题的本质。 1、I/O的概念 I/O 的全称是Input/Output。虽常谈及I/O&#xff0c;但想必你也一时不能给出一个完整的定义。搜索了谷哥欠&#xff0c;发…

MySQl int(1)、int(20) 的区别到底在哪里

MySQl int(1)、int(20) 的区别到底在哪里 常思一二&#xff0c;便得自然… int(1)数据类型介绍 在MySQL中&#xff0c;INT(1) 是一种定义整数类型的数据字段&#xff0c;其中的数字表示显示宽度而不是存储范围。具体说&#xff0c;INT(1) 中的数字 1 表示显示宽度&#xff0…

数字人知识库:Awesome-Talking-Head-Synthesis

数字人知识库&#xff1a;Awesome-Talking-Head-Synthesis 文章目录 数字人知识库&#xff1a;Awesome-Talking-Head-SynthesisDatasetsSurveyAudio-drivenText-drivenNeRF & 3DMetricsTools & SoftwareSlides & Presentations Gihub&#xff1a;https://github.co…

从 ByteHouse 网关,看如何进一步提升 OLAP 引擎性能

更多技术交流、求职机会&#xff0c;欢迎关注字节跳动数据平台微信公众号&#xff0c;回复【1】进入官方交流群 随着数字化转型的加速&#xff0c;企业面临着海量数据收集、处理和分析挑战。ClickHouse因其分析速度快、高性能的特点&#xff0c;被开发者广泛使用。 作为连接客户…

OPC UA客户端工具UaExpert使用

OPC UA客户端工具UaExpert使用 官方下载地址: https://www.unified-automation.com/downloads.html UaExpert 是一个全功能的 OPC UA 客户端&#xff0c;能够支持多个 OPC UA 配置文件和功能。 安装UaExpert 官方下载最新安装包: uaexpert-bin-win32-x86-vs2008sp1-v1.5.1-…

一文搞懂系列——你真的了解如何生成动态库了吗?

引言 动态库的编译&#xff0c;这有什么难度&#xff0c;这不是手到擒来的事情吗&#xff1f;无非不就是&#xff1a; gcc -FPIC -shared -o libxxx.so *.o *.c 我若是提出这些需求场景&#xff0c;阁下又如何应对呢&#xff1f; 动态库A依赖其他部分提供的能力。但是却不…

网络层(1)——概述

一、概述 网络层毫无疑问是最复杂的一层&#xff0c;涉及到大量的协议与结构的内容。在如今主流的设计中&#xff0c;大家都会把网络层分成两个部分&#xff1a;数据平面、控制平面。其中数据平面指的是网络层中每台路由器的功能&#xff0c;它决定了到达路由器端口输入链路之一…

马蹄集 oj赛(双周赛第十六次)

目录 ​圣诞树上的星星 军团大战 堆煤球 武力对决 小码哥教数学 小码哥玩字母独 跳跳棋 激光扫描游戏 数数游戏 小狗巴克 魔塔密码 地狱尖兵 3D眩晕 圣诞树上的星星 难度:青铜 时间限制: 1秒占用内存:64M 小码哥在过圣诞节! 小码哥家里有很多个星星 *&#xff0c…

热烈祝贺许战海老师成为北京湖南商会特聘专家!

在北京的初冬时节&#xff0c;一股商业的暖流在世纪华天大酒店的湖南厅中涌动。2023年12月3日下午&#xff0c;这里迎来了一场盛大的聚会——北京湖南企业商会成立20周年的预热活动之一&#xff1a;“湘商大讲堂”。这不仅是一次庆祝&#xff0c;更是一次对未来的展望&#xff…

在Pwn中,为什么时长需要栈对齐?

Index 介绍知识要点正文 介绍 在 Pwn 的学习中&#xff0c;对于初学者常常会遇到这个问题&#xff1a; 找到了溢出点&#xff0c;并且知道如何溢出&#xff0c;但是不知道为什么自己的Payload并没有成功&#xff0c;Pwntools报错EOF&#xff1a; 今天趁着有时间&#xff0c;来…

C++ 指针进阶

目录 一、字符指针 二、指针数组 三、数组指针 数组指针的定义 &数组名 与 数组名 数组指针的使用 四、数组参数 一维数组传参 二维数组传参 五、指针参数 一级指针传参 二级指针传参 六、函数指针 七、函数指针数组 八、指向函数指针数组的指针 九、回调函…

HBase 使用JDK21

HBase 使用JDK21 启动zookeeper和hadoop 创建软件目录 mkdir -p /opt/soft cd /opt/soft下载软件 wget https://dlcdn.apache.org/hbase/2.5.6/hbase-2.5.6-hadoop3-bin.tar.gz解压 hbase tar -zxvf hbase-2.5.6-hadoop3-bin.tar.gz修改 hbase 目录名称 mv hbase-2.5.6-had…