智能优化算法应用:基于社交网络算法无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于社交网络算法无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于社交网络算法无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.社交网络算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用社交网络算法进行无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n ) (x_n,y_n) (xn,yn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p ) p(x_p,y_p) p(xp,yp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 ,   d ( n , p ) ≤ R n 0 ,   e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2} d(n,p)=(xnxp)2+(ynyp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , r } node_i=\{x_i,y_i,r\} nodei={xi,yi,r},表示以节点 ( x i , y i ) (x_i,y_i) (xi,yi)为圆心,r为监测半径的圆,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n m*n mn个像素点,像素点的坐标为 ( x , y ) (x,y) (x,y),目标像素点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2 (3)
目标区域内像素点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为像素点 ( x , y ) (x,y) (x,y)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , n o d e i ) = { 1 , i f   d ( n o d e i , p ) ≤ r 0 ,   e s l e (4) P_{cov}(x,y,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n (5) CoverRatio = \frac{\sum P_{cov}}{m*n}\tag{5} CoverRatio=mnPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.社交网络算法

社交网络算法原理请参考:https://blog.csdn.net/u011835903/article/details/122390020
该算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY
AreaX = 100;
AreaY = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

社交网络算法参数如下:

%% 设定优化参数
pop=30; % 种群数量
Max_iteration=80; %设定最大迭代次数
lb = ones(1,2*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N)];
dim = 2*N;%维度为2N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升,表明社交网络算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/225987.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【C语言】程序设计加密解密

🚩write in front🚩 🔎 介绍:"謓泽"正在路上朝着"攻城狮"方向"前进四" 🔎🏅 荣誉:2021|2022年度博客之星物联网与嵌入式开发TOP5|TOP4、2021|2222年获评百大博…

三层交换机配置DHCP服务

第一步:进入二层交换机Switch 1)输入命令: Switch(config)#vlan 10 Switch(config)#vlan 20 2)修改F0/1 和F0/2为access口,F0/24为trunk口 第二步:进入三层交换机 1)输入命令 Switch(config)#…

Vulnhub项目:EMPIRE: LUPINONE

一、靶机地址 靶机地址:Empire: LupinOne ~ VulnHub 靶机描述: 来,看一看,同样的配方,不同的设计,难度为中等,迷路了就成困难了,不得不说,还真是! 几次陷入…

kafka windows版本的下载安装,并且本地使用(亲测有效)

目录 1 问题2 下载 1 问题 本地启动一个kafka ,然后可以实现生产者 消费者 2 下载 https://downloads.apache.org/kafka/ 选择一个版本下载 下载之后解压 修改配置 修改好之后,就保存,之后先启动zookper ,之后再启动 ka…

通过内网穿透模拟私服

通过内网穿透模拟私服nexus 1.问题引出 在学习黑马程序员2023新版JavaWeb开发教程的maven高级时,需要用到私服,黑马提供的资料中私服地址不能使用,需要自己搭建一个私服。 若使用传统的方式将私服部署到本地PC无法模拟真实的私服连接情况&…

VINS编译, opencv多版本的原因导致的问题

1. 通用问题 问题一 编译时报错 error: ‘CV_GRAY2RGB’ was not declared in this scope 等 解决方法 在报错文件上添加头文件 #include <opencv2/imgproc/imgproc_c.h> 单独遇到CV_AA的报错时&#xff0c;也可以将 CV_AA 改为 cv::LINE_AA 问题二 编译时报错 erro…

[python库] mistune库的基本使用

前言 mistune库是一个解析Markdown的利器&#xff0c;使用起来非常简单。当我们想要解析Markdown格式的文档时&#xff0c;只需两步就能将其转换成html格式。如下&#xff1a; import mistune mistune.html(YOUR_MARKDOWN_TEXT)安装方式也非常简单&#xff0c;dddd&#xff1…

如何在 PyQt 中实现异步数据库请求

需求 开发软件的时候不可避免要和数据库发生交互&#xff0c;但是有些 SQL 请求非常耗时&#xff0c;如果在主线程中发送请求&#xff0c;可能会造成界面卡顿。这篇博客将会介绍一种让数据库请求变得和前端的 ajax 请求一样简单&#xff0c;且不会阻塞界面的异步请求方法。 实…

如何使用phpStudy本地快速搭建网站并内网穿透远程访问

文章目录 使用工具1. 本地搭建web网站1.1 下载phpstudy后解压并安装1.2 打开默认站点&#xff0c;测试1.3 下载静态演示站点1.4 打开站点根目录1.5 复制演示站点到站网根目录1.6 在浏览器中&#xff0c;查看演示效果。 2. 将本地web网站发布到公网2.1 安装cpolar内网穿透2.2 映…

【webpack】初始化

webpack 旧项目的问题下一代构建工具 Vite 主角 &#xff1a;webpack安装webpack1&#xff0c;mode的选项2&#xff0c;使用source map 精准定位错误行数3&#xff0c;使用watch mode(观察模式)&#xff0c;自动运行4&#xff0c;使用webpack-dev-server工具&#xff0c;自动刷…

python flask Jinja2模板学习

分类很好的一篇文章 Jinja2模板语法 Jinja2里常见的三种定界符&#xff1a; (1) 语句 {% ... %}(2) 表达式 {{ ... }}(3) 注释 {# ... #} {%set adazhaung%} 语句设置变量{{a}} 表达式{% if 2>1 %}控制语句以{%endif%}结尾 Jinja2支持使用“.”获取变量的属…

ERP软件定制开发对企业的优势|app小程序搭建

ERP软件定制开发对企业的优势|app小程序搭建 随着科技的不断发展&#xff0c;企业管理也面临了更多的挑战。为了更好地适应市场需求和提高运营效率&#xff0c;越来越多的企业开始选择使用ERP软件进行管理。然而&#xff0c;市场上现成的ERP软件并不能完全满足企业的需求&#…

【移动端vant 地址选择滑动不了】

分析&#xff1a; H5页面直接在浏览器打开是没有任何问题的&#xff0c;但是内嵌到小程序中就会出现&#xff0c;目前已出现在抖音&#xff0c;快手&#xff0c;小程序中&#xff0c;其他的没有试 大致看了一下&#xff0c;滑动不了的原因&#xff0c;可能是页面禁止滑动或滚动…

人工智能企业引入S-SDLC,推动安全能力大跃升,保障AI技术体系深化落地

某人工智能公司是国际知名的上市企业&#xff0c;核心技术处于世界前沿水平。多年来&#xff0c;该企业在智慧教育、智慧医疗、智慧城市、智慧司法、金融科技、智能汽车、运营商、消费者等领域进行深度技术赋能&#xff0c;深入推进各个行业的智能化、数字化转型建设。 人工智能…

第二十一 网络通信

网络通信 21.1 网络程序设计基础 网络程序设计编写的是与其他计算机进行通信的程序。 21.1.1 局域网与互联网 实现两台计算机的通信&#xff0c;必须用一个网络线路来连接两台计算机 21.1.2 网络协议 1.ip协议 IP是Internet Protocol的简称&#xff0c;是一种网络协议 2…

使用cpolar完成内网穿刺

cpolar官网上有一句评论&#xff1a;cpolar是用过最简单的内网穿刺工具&#xff01; 实际体验下来&#xff0c;cpolar确实是能够非常简单地实现内网穿刺 先说弊端&#xff0c;免费版的cpolar提供的穿刺地址&#xff0c;有效期为一天&#xff0c;进程连接数有限&#xff0c;如…

企业软件的分类有哪些|app小程序定制开发

企业软件的分类有哪些|app小程序定制开发 企业软件是指为了满足企业运营和管理需求而开发的软件系统。根据不同的功能和应用领域&#xff0c;企业软件可以分为以下几个分类&#xff1a; 1. 企业资源计划&#xff08;Enterprise Resource Planning&#xff0c;ERP&#xff09;软…

非线性成长的科技潮品,Realme“大黑马”之路如何延续?

存量博弈时代&#xff0c;如何从“内卷”中突围&#xff0c;是智能手机市场最大的命题。 12月4日&#xff0c;真我realme副总裁、全球营销总裁、中国区总裁徐起在社交媒体发言&#xff1a;“既然已经在红海市场里&#xff0c;那就血战到底吧&#xff01;” 这是为12月7日发布的…

python-比较Excel两列数据,并分别显示差异

利用 openpyxl 模块&#xff0c;操作Excel&#xff0c;比较Excel两列数据&#xff0c;并分别显示差异 表格数据样例如下图 A&#xff0c;B两列是需要进行比较的数据&#xff08;数据源为某网站公开数据&#xff09;&#xff1b;C&#xff0c;D两列是比较结果的输出列 A&#…

Chatgpt如何完成论文写作及python机器学习和深度学习领域的运用

2023年随着OpenAI开发者大会的召开&#xff0c;最重磅更新当属GPTs&#xff0c;多模态API&#xff0c;未来自定义专属的GPT。微软创始人比尔盖茨称ChatGPT的出现有着重大历史意义&#xff0c;不亚于互联网和个人电脑的问世。360创始人周鸿祎认为未来各行各业如果不能搭上这班车…