MySQL高级篇——覆盖索引、前缀索引、索引下推、SQL优化、主键设计

导航: 

【Java笔记+踩坑汇总】Java基础+进阶+JavaWeb+SSM+SpringBoot+瑞吉外卖+SpringCloud+黑马旅游+谷粒商城+学成在线+MySQL高级篇+设计模式+牛客面试题

目录

8. 优先考虑覆盖索引

8.1 什么是覆盖索引?

8.1.0 概念 

8.0.1 覆盖索引情况下,“不等于”索引生效

8.0.2 覆盖索引情况下,左模糊查询索引生效

8.2 覆盖索引的利弊

9. 给字符串添加索引

9.1 前缀索引

9.2 前缀索引不能用覆盖索引

10. 索引下推

10.1 介绍

10.2 ICP的使用条件

10.3 ICP的开启/关闭

10.4 ICP使用案例

10.5 开启和关闭ICP性能对比

11. 普通索引 vs 唯一索引

11.1 查询性能近似

11.2 普通索引更新性能更高,change buffer

11.3 change buffer的使用场景

12. SQL优化

12.1 EXISTS 和 IN 的区分

12.2 建议COUNT(*)或COUNT(1)

12.3 建议SELECT(字段)而不是SELECT(*)

12.4 LIMIT 1 对优化的影响

12.5 多使用COMMIT

13. 主键设计思路

13.1 自增主键的缺点

13.2 业务字段尽量不要做主键

13.3 淘宝订单号的主键设计

13.4 推荐的主键设计

13.4.1 核心与非核心业务主键策略选择

13.4.2 UUID的特点

13.4.3 MySQL 8.0主键方案:有序UUID

13.4.4 MySQL8.0之前主键方案:手动赋值


8. 优先考虑覆盖索引

8.1 什么是覆盖索引?

8.1.0 概念 

覆盖索引:一个索引包含了满足查询结果的数据就叫做覆盖索引,不需要回表等操作。

索引是高效找到行的一个方法,但是一般数据库也能使用索引找到一个列的数据,因此它不必读取整个行。毕竟索引叶子节点存储了它们索引的数据;当能通过读取索引就可以得到想要的数据,那就不需要读取行了。

覆盖索引是非聚簇索引的一种形式,它包括在查询里的SELECT、JOIN和WHERE子句用到的所有列 (即建索引的字段正好是覆盖查询条件中所涉及的字段)。简单说就是, 索引列+主键 包含 SELECT 到 FROM之间查询的列

8.0.1 覆盖索引情况下,“不等于”索引生效

没覆盖索引情况下,“不等于”索引失效:

没覆盖索引的情况下,使用“不等于”导致索引失效。因为如果使用索引,则需要依次遍历非聚簇索引B+树里所有叶节点,时间复杂度O(n),找到记录后还要回表,加在一起效率不如全表扫描,所以查询优化器就选择全表扫描了。

CREATE INDEX idx_age_name ON student(age, NAME);
#查所有字段,并且使用“不等于”,索引失效
EXPLAIN SELECT * FROM student WHERE age <> 20;

覆盖索引情况下,“不等于”索引生效:

覆盖索引,查的两个字段被联合索引给覆盖了,性能更高。虽然还是需要依次遍历非聚簇索引B+树里所有叶节点,时间复杂度O(n),但是不需要回表了,整体效率比不用索引更高,查询优化器就又使用索引了。

CREATE INDEX idx_age_name ON student(age, NAME);
#查的两个字段正好被联合索引“idx_age_name ”覆盖了,索引成功
EXPLAIN SELECT age,name FROM student WHERE age <> 20;

8.0.2 覆盖索引情况下,左模糊查询索引生效

没覆盖索引的情况下,左模糊查询导致索引失效

#没覆盖索引的情况下,左模糊查询导致索引失效
CREATE INDEX idx_age_name ON student(age, NAME);
EXPLAIN SELECT * FROM student WHERE NAME LIKE '%abc';

覆盖索引情况下,左模糊查询索引生效

主要原因也是因为走非聚簇索引B+树遍历叶节点,不回表,效率会比全表扫描时高,查询优化器选择效率高的方案。

#有覆盖索引的情况下,左模糊查询索引生效
CREATE INDEX idx_age_name ON student(age, NAME);
EXPLAIN SELECT id,age,NAME FROM student WHERE NAME LIKE '%abc';

上述都使用到了声明的索引,下面的情况则不然,查询列依然多了classId,结果是未使用到索引:

CREATE INDEX idx_age_name ON student(age, NAME);
EXPLAIN SELECT id,age,NAME,classId FROM student WHERE NAME LIKE '%abc';

8.2 覆盖索引的利弊

好处:

1.避免回表(Innodb表进行索引的二次查询)

Innodb是以聚集索引的顺序来存储的,对于lnnodb来说,二级索引在叶子节点中所保存的是行的主键信息,如果是用二级索引查询数据,在查找到相应的键值后,还需通过主键进行二次查询才能获取我们真实所需要的数据。

在覆盖索引中,二级索引的键值中可以获取所要的数据,避免了对主键的二次查询 ,减少了IO操作,提升了查询效率。

2.可以把随机IO变成顺序IO加快查询效率

由于覆盖索引是按键值的顺序存储的,对于IO密集型的范围查找来说,对比随机从磁盘读取每一行的数据I0要少的多,因此利用覆盖索引在访问时也可以把磁盘的随机读取的IO 转变成索引查找的 顺序IO。

由于覆盖索引可以减少树的搜索次数,显著提升查询性能,所以使用覆盖索引是一个常用的性能优化手段。

弊端:

具体问题要具体分析:

索引字段的维护总是有代价的。因此,在建立几余索引来支持覆盖索引时就需要权衡考虑了。这是业务DBA,或者称为业务数据架构师的工作。

9. 给字符串添加索引

9.1 前缀索引

有一张教师表,表定义如下:

create table teacher(
ID bigint unsigned primary key,
email varchar(64),
...
)engine=innodb;

讲师要使用邮箱登录,所以业务代码中一定会出现类似于这样的语句:

mysql> select col1, col2 from teacher where email='xxx';

如果email这个字段上没有索引,那么这个语句就只能做 全表扫描

MySQL是支持前缀索引的。默认地,如果你创建索引的语句不指定前缀长度,那么索引就会包含整个字符串。

mysql> alter table teacher add index index1(email);
#或
mysql> alter table teacher add index index2(email(6));

这两种不同的定义在数据结构和存储上有什么区别呢?下图就是这两个索引的示意图。

以及

如果使用的是index1(索引包含整个字符串),执行顺序是这样的:

  1. 从index1索引树找到满足索引值是’ zhangssxyz@xxx.com’的这条记录,取得ID2的值;
  2. 回表到主键上查到主键值是ID2的行,判断email的值是正确的,将这行记录加入结果集;
  3. 取index1索引树上刚刚查到的位置的下一条记录,发现已经不满足email=' zhangssxyz@xxx.com ’的 条件了,循环结束。

这个过程中,只需要回主键索引取一次数据,所以系统认为只扫描了一行。

如果使用的是index2(索引包含字符串前缀email(6)),执行顺序是这样的:

  1. 从index2索引树找到满足索引值是’zhangs’的记录,找到的第一个是ID1;
  2. 回表到主键上查到主键值是ID1的行,判断出email的值不是’ zhangssxyz@xxx.com ’,这行记录丢弃;
  3. 取index2上刚刚查到的位置的下一条记录,发现仍然是’zhangs’,取出ID2,再到回表到ID索引上取整行然后判断,这次值对了,将这行记录加入结果集;
  4. 重复上一步,直到在index2上取到的值不是’zhangs’时,循环结束。

也就是说使用前缀索引,定义好长度,就可以做到既节省空间,又不用额外增加太多的查询成本。前面 已经讲过区分度,区分度越高越好。因为区分度越高,意味着重复的键值越少。

9.2 前缀索引不能用覆盖索引

因为非聚簇索引树查到的数据是前缀和id,前缀不是完整数据,必须要回表到聚簇索引树。

所以使用前缀索引就用不上覆盖索引对查询性能的优化了,这也是你在选择是否使用前缀索引时需要考虑的一个因素。

10. 索引下推

10.1 介绍

索引下推(ICP,Index Condition Pushdown)是MySQL 5.6中新特性,是一种在存储引擎层使用索引过滤数据的一种优化方式。

  • 如果没有ICP:联合索引某字段是模糊查询(非左模糊)时,该字段进行条件判断后,后面几个字段不能用来直接条件判断,必须回表后再判断。
  • 启用ICP 后:联合索引某字段是模糊查询(非左模糊)时,该字段进行条件判断后,后面几个字段可以直接条件判断,判断过滤后再回表对不包含在联合索引内的字段条件进行判断。主要优化点是在回表之前过滤,减少回表次数。主要应用:模糊查询(非左模糊)导致索引里该字段后面的字段无序,必须要回表判断,而使用了索引下推,就不需要回表,直接在联合索引树里判断。

如果没有ICP ,存储引擎会遍历索引以定位基表中的行,并将它们返回给 MySQL 服务器,由 MySQL 服务器评古WHERE 后面的条件是否保留行。
启用ICP 后,如果部分 WHERE 条件可以仅使用索引中的列进行筛选,则MySQL 服务器会把这部分WHERE 条件放到存储引擎筛选。然后,存储引擎通过使用索引条目来筛选数据,并且只有在满足这一条件时才从表中读取行。

好处: ICP可以减少存储引擎必须访问基表的次数和MySQL服务器必须访问存储引擎的次数。但是,ICP的 加速效果 取决于在存储引擎内通过 ICP筛选 的数据的比例。 

举例:

不支持索引下推的联合索引:例如索引(name,age),查询name like 'z%' and age=?,模糊查询导致age无序。在联合索引树查询时只会查name,后面的age乱序不能直接进行条件判断,必须回表后再判断age。

而支持索引下推的联合索引:例如索引(name,age),查询name like 'z%' and age and address,在联合索引树查询时不止查name,还会判断后面的age,过滤后再回表判断address。

CREATE INDEX idx_name_age ON student(name,age);
#索引失败;非覆盖索引时,左模糊导致索引失效
EXPLAIN SELECT * FROM student WHERE name like '%bc%' AND age=30;
#索引成功;MySQL5.6引入索引下推,where后面的name和age都在联合索引里,可以又过滤又索引,不用回表,索引生效
EXPLAIN SELECT * FROM student WHERE `name` like 'bc%' AND age=30;
#索引成功;name走索引,age用到索引下推过滤,classid不在联合索引里,需要回表。
EXPLAIN SELECT * FROM student WHERE `name` like 'bc%' AND age=30 AND classid=2;

好处: 某些场景下ICP可以大大减少回表次数,提高性能。ICP可以减少存储引擎必须访问基表的次数和MySQL服务器必须访问存储引擎的次数。但是,ICP的 加速效果 取决于在存储引擎内通过 ICP筛选 的数据的比例。

10.2 ICP的使用条件

  • 表的访问类型为 range 、 ref 、 eq_ref 或者 ref_or_null 。
  • 存储引擎:ICP可以用于InnDB和MyISAM存储引擎
  • 必须二级索引:对于InnoDB表,ICP仅用于二级索引。ICP的目标是减少全行读取次数,从而减少I/O操作。
  • 必须不是覆盖索引:当SQL使用覆盖索引时,不支持ICP优化方法。因为这种情况下使用ICP不会减少I/O。
  • 相关子查询的条件不能使用ICP
  • 必须5.6版本及以上:MySQL 5.6版本引入并默认开启,之前版本不支持索引下推。
  • 必须where字段在索引列中:并非全部where条件都可以用ICP筛选,如果where条件的字段不在索引列中,还是要读取整表的记录到server端做where过滤。

10.3 ICP的开启/关闭

  • 默认情况下启动索引条件下推。可以通过设置系统变量optimizer_switch控制:index_condition_pushdown
# 打开索引下推
SET optimizer_switch = 'index_condition_pushdown=on';

# 关闭索引下推
SET optimizer_switch = 'index_condition_pushdown=off';
  • 当使用索引条件下推是,EXPLAIN语句输出结果中Extra列内容显示为Using index condition

10.4 ICP使用案例

  • 主键索引 (简图)

二级索引zip_last_first (简图,这里省略了数据页等信息)

10.5 开启和关闭ICP性能对比

11. 普通索引 vs 唯一索引

从性能的角度考虑,你选择唯一索引还是普通索引呢?选择的依据是什么呢?

假设,我们有一个主键列为ID的表,表中有字段k,并且在k上有索引,假设字段 k 上的值都不重复。

这个表的建表语句是:

mysql> create table test(
id int primary key,
k int not null,
name varchar(16),
index (k)
)engine=InnoDB;

表中R1~R5的(ID,k)值分别为(100,1)、(200,2)、(300,3)、(500,5)和(600,6)。

11.1 查询性能近似

假设,执行查询的语句是 select id from test where k=5。

  • 对于普通索引来说,查找到满足条件的第一个记录(5,500)后,需要查找下一个记录,直到碰到第一个不满足k=5条件的记录。
  • 对于唯一索引来说,由于索引定义了唯一性,查找到第一个满足条件的记录后,就会停止继续检索。

那么,这个不同带来的性能差距会有多少呢?答案是, 微乎其微

11.2 普通索引更新性能更高,change buffer

写缓存(change buffer):

当需要更新一个数据页时,如果数据页在内存中就直接更新,而如果这个数据页还没有在内存中的话, 在不影响数据一致性的前提下, InooDB会将这些更新操作缓存在change buffer中 ,这样就不需要从磁盘中读入这个数据页了。在下次查询需要访问这个数据页的时候,将数据页读入内存,然后执行change buffer中与这个页有关的操作。通过这种方式就能保证这个数据逻辑的正确性。

merge :将change buffer中的操作应用到原数据页,得到最新结果的过程称为 merge 。除了访问这个数据页会触发merge外,系统有后台线程会定期merge。在数据库正常关闭(shutdown)的过程中,也会执行merge 操作。

如果能够将更新操作先记录在change buffer, 减少读磁盘 ,语句的执行速度会得到明显的提升。而且, 数据读入内存是需要占用 buffer pool 的,所以这种方式还能够 避免占用内存,提高内存利用率。

唯一索引的更新就不能使用change buffer ,实际上也只有普通索引可以使用。

做好区分:

  • 读数据用的是缓冲池buffer pool
  • 重做日志有个redo log buffer,是将缓冲池里更新的数据写入redo log buffer,事务提交时根据刷盘策略,将redo log buffer刷盘到redo log file或page cache。

11.3 change buffer的使用场景

  • 普通索引和唯一索引应该怎么选择?其实,这两类索引在查询能力上是没差别的,主要考虑的是对更新性能的影响。所以,建议你尽量选择普通索引

  • 在实际使用中会发现, 普通索引 和 change buffer 的配合使用,对于 数据量大 的表的更新优化 还是很明显的。

  • 不适合change buffer情况:如果所有的更新后面,都马上伴随着对这个记录的查询 ,那么你应该关闭change buffer 。而在其他情况下,change buffer都能提升更新性能。

  • 事务提交的时候,change buffer 的操作也会记录到redo log中,所以崩溃恢复时,change buffer 也可以找回来。

  • 由于唯一索引用不上change buffer的优化机制,因此如果业务可以接受 ,从性能角度出发建议优先考虑非唯一索引。但是如果"业务可能无法确保"的情况下,怎么处理呢?

    • 首先, 业务正确性优先 。我们的前提是“业务代码已经保证不会写入重复数据”的情况下,讨论性能 问题。如果业务不能保证,或者业务就是要求数据库来做约束,那么没得选,必须创建唯一索引。 这种情况下,本节的意义在于,如果碰上了大量插入数据慢、内存命中率低的时候,给你多提供一 个排查思路。
    • 然后,在一些“ 归档库 ”的场景,你是可以考虑使用唯一索引的。比如,线上数据只需要保留半年, 然后历史数据保存在归档库。这时候,归档数据已经是确保没有唯一键冲突了。要提高归档效率, 可以考虑把表里面的唯一索引改成普通索引。

12. SQL优化

12.1 EXISTS 和 IN 的区分

问题:

不太理解哪种情况下应该使用 EXISTS,哪种情况应该用 IN。选择的标准是看能否使用表的索引吗?

回答:

12.2 建议COUNT(*)或COUNT(1)

统计行数尽量用COUNT(1),COUNT(*):COUNT(1),COUNT(*)时,查询优化器会优先选用有索引的、占用空间最小的二级索引树进行统计,只有找不到非聚簇索引树时采用使用聚簇索引树统计,空间占用大。当然也能COUNT(最小空间二级索引字段),但麻烦不如交给优化器自动选择。

SELECT COUNT(*) FROM student;
SELECT COUNT(1) FROM student;

 问:在 MySQL 中统计数据表的行数,可以使用三种方式: SELECT COUNT(*) 、 SELECT COUNT(1) 和 SELECT COUNT(具体字段) ,使用这三者之间的查询效率是怎样的?

答:如果你要统计的是某个字段的非空数据行数,则另当别论,毕竟比较执行效率的前提是结果一样才可以。

COUNT(*)和COUNT(1): COUNT(*) 和COUNT(1)都是对所有结果进行COUNT(*)COUNT(*)和COUNT(1)本质上并没有区别(二者执行时间可能略有差别,不过你还是可以把它俩的执行效率看成是相等的)。如果有 WHERE 子句,则是对所有符合筛选条件的数据行进行统计,如果没有 WHERE子句,则是对数据表的数据行数进行统计。

MylSAM 统计只需O(1):如果是 MylSAM 存储引擎,统计数据表的行数只需要 O(1)的复杂度,这是因为每张 MyISAM 的数据表都有一个 meta 信息存储了 row_count 值,而一致性则由表级锁来保证。 如果是InnoDB 存储引擎,因为innoDB 支持事务,采用行级锁和 MVCC机制,所以无法像 MyISAM一样,维护1个row_count变量,因此需要采用扫描全表,是O(n)的复杂度,进行循环+计数的方式来完成统计。

选择建议:在ImnoDB中,如果采用COUNT(具体字段)来统计数据行数,要尽量采用二级索引。因为主键是聚簇索引,聚簇索引叶节点包含整个记录,统计时要加载到内存的数据量更大,性能就差一点。对于COUNT(*)和 COUNT(1)来说,它们不需要查找具体的行,只是统计行数,系统会自动采用占用空间更小的二级索引来进行统计。 如果有多个二级索引,会使用 key_len 小的二级索引进行扫描。当没有二级索引的时候,才会采用主键索引来进行统计。

12.3 建议SELECT(字段)而不是SELECT(*)

在表查询中,建议明确字段,不要使用 * 作为查询的字段列表,推荐使用SELECT <字段列表> 查询。原因:

① MySQL 在解析的过程中,会通过查询数据字典将“*”按序转换成所有列名,这会大大的耗费资源和时间。

② 无法使用覆盖索引

12.4 LIMIT 1 对优化的影响

针对的是会扫描全表的 SQL 语句,如果你可以确定结果集只有一条,那么加上 LIMIT 1 的时候,当找到一条结果的时候就不会继续扫描了,这样会加快查询速度。

如果数据表已经对字段建立了唯一索引,那么可以通过索引进行查询,不会全表扫描的话,就不需要加上 LIMIT 1 了。

12.5 多使用COMMIT

只要有可能,在程序中尽量多使用 COMMIT,这样程序的性能得到提高,需求也会因为 COMMIT 所释放的资源而减少。

COMMIT 所释放的资源:

  • 回滚段上用于恢复数据的信息
  • 被程序语句获得的锁
  • redo / undo log buffer 中的空间
  • 管理上述 3 种资源中的内部花费

13. 主键设计思路

聊一个实际问题:淘宝的数据库,主键是如何设计的?

某些错的离谱的答案还在网上年复一年的流传着,甚至还成为了所谓的MySQL军规。其中,一个最明显的错误就是关于MySQL的主键设计。

大部分人的回答如此自信:用8字节的 BIGINT 做主键,而不要用INT。

这样的回答,只站在了数据库这一层,而没有 从业务的角度 思考主键。主键就是一个自增ID吗?目前用自增做主键,架构设计上可能连及格都拿不到

13.1 自增主键的缺点

自增ID做主键,简单易懂,几乎所有数据库都支持自增类型,只是实现上各自有所不同而已。自增ID除了简单,其他都是缺点,总体来看存在以下几方面的问题:

  • 可靠性不高

    存在自增ID回溯的问题,这个问题直到最新版本的MySQL 8.0才修复。

  • 安全性不高

    对外暴露的接口可以非常容易猜测对应的信息。比如:/User/1/这样的接口,可以非常容易猜测用户ID的 值为多少,总用户数量有多少,也可以非常容易地通过接口进行数据的爬取。

  • 性能差

    自增ID的性能较差,需要在数据库服务器端生成。

  • 需要额外执行函数得知自增值,影响性能

    业务还需要额外执行一次类似 last_insert_id() 的函数才能知道刚才插入的自增值,这需要多一次的 网络交互。在海量并发的系统中,多1条SQL,就多一次性能上的开销

  • 全局不唯一,高并发时自增锁竞争影响性能

    最重要的一点,自增ID是局部唯一,只在当前数据库实例中唯一,而不是全局唯一,在任意服务器间都是唯一的。对于目前分布式系统来说,这简直就是噩梦。

  • 分库分表、数据迁移时,自增不再适用。

13.2 业务字段尽量不要做主键

为了能够唯一地标识一个会员的信息,需要为 会员信息表设置一个主键。那么,怎么为这个表设置主 键,才能达到我们理想的目标呢? 这里我们考虑业务字段做主键。

表数据如下:

在这个表里,哪个字段比较合适呢?

  • 选择卡号(cardno)

会员卡号(cardno)看起来比较合适,因为会员卡号不能为空,而且有唯一性,可以用来 标识一条会员 记录。

mysql> CREATE TABLE demo.membermaster
-> (
-> cardno CHAR(8) PRIMARY KEY, -- 会员卡号为主键
-> membername TEXT,
-> memberphone TEXT,
-> memberpid TEXT,
-> memberaddress TEXT,
-> sex TEXT,
-> birthday DATETIME
-> );
Query OK, 0 rows affected (0.06 sec)

不同的会员卡号对应不同的会员,字段“cardno”唯一地标识某一个会员。如果都是这样,会员卡号与会员一一对应,系统是可以正常运行的。

但实际情况是,会员卡号可能存在重复使用的情况。比如,张三因为工作变动搬离了原来的地址,不再到商家的门店消费了(退还了会员卡),于是张三就不再是这个商家门店的会员了。但是,商家不想让这个会员卡空着,就把卡号是“10000001”的会员卡发给了王五。

从系统设计的角度看,这个变化只是修改了会员信息表中的卡号是“10000001”这个会员信息,并不会影响到数据一致性。也就是说,修改会员卡号是“10000001”的会员信息,系统的各个模块,都会获取到修改后的会员信息,不会出现“有的模块获取到修改之前的会员信息,有的模块获取到修改后的会员信息,而导致系统内部数据不一致”的情况。因此,从信息系统层面上看是没问题的。
但是从使用系统的业务层面来看,就有很大的问题了,会对商家造成影响。

比如,我们有一个销售流水表(trans),记录了所有的销售流水明细。2020年12月01日,张三在门店购买了一本书,消费了89元。那么,系统中就有了张三买书的流水记录,如下所示:

接着,我们查询一下 2020 年 12 月 01 日的会员销售记录:

mysql> SELECT b.membername,c.goodsname,a.quantity,a.salesvalue,a.transdate
-> FROM demo.trans AS a
-> JOIN demo.membermaster AS b
-> JOIN demo.goodsmaster AS c
-> ON (a.cardno = b.cardno AND a.itemnumber=c.itemnumber);
+------------+-----------+----------+------------+---------------------+
| membername | goodsname | quantity | salesvalue | transdate |
+------------+-----------+----------+------------+---------------------+
|     张三   | 书         | 1.000    | 89.00      | 2020-12-01 00:00:00 |
+------------+-----------+----------+------------+---------------------+
1 row in set (0.00 sec)

如果会员卡“10000001”又发给了王五,我们会更改会员信息表。导致查询时:

mysql> SELECT b.membername,c.goodsname,a.quantity,a.salesvalue,a.transdate
-> FROM demo.trans AS a
-> JOIN demo.membermaster AS b
-> JOIN demo.goodsmaster AS c
-> ON (a.cardno = b.cardno AND a.itemnumber=c.itemnumber);
+------------+-----------+----------+------------+---------------------+
| membername | goodsname | quantity | salesvalue | transdate |
+------------+-----------+----------+------------+---------------------+
| 王五        | 书        | 1.000    | 89.00      | 2020-12-01 00:00:00 |
+------------+-----------+----------+------------+---------------------+
1 row in set (0.01 sec)

这次得到的结果是:王五在 2020 年 12 月 01 日,买了一本书,消费 89 元。显然是错误的!结论:千万不能把会员卡号当做主键。

  • 选择会员电话或身份证号

会员电话可以做主键吗?不行的。在实际操作中,手机号也存在被运营商收回,重新发给别人用的情况。

那身份证号行不行呢?好像可以。因为身份证决不会重复,身份证号与一个人存在一一对应的关系。可问题是,身份证号属于个人隐私,顾客不一定愿意给你。要是强制要求会员必须登记身份证号,会把很多客人赶跑的。其实,客户电话也有这个问题,这也是我们在设计会员信息表的时候,允许身份证号和电话都为空的原因。

所以,建议尽量不要用跟业务有关的字段做主键。毕竟,作为项目设计的技术人员,我们谁也无法预测 在项目的整个生命周期中,哪个业务字段会因为项目的业务需求而有重复,或者重用之类的情况出现。

经验: 刚开始使用 MySQL 时,很多人都很容易犯的错误是喜欢用业务字段做主键,想当然地认为了解业务需求,但实际情况往往出乎意料,而更改主键设置的成本非常高。

13.3 淘宝订单号的主键设计

在淘宝的电商业务中,订单服务是一个核心业务。请问, 订单表的主键淘宝是如何设计的呢?是自增ID 吗?

打开淘宝,看一下订单信息:

从上图可以发现,订单号不是自增ID!我们详细看下上述4个订单号:

1550672064762308113
1481195847180308113
1431156171142308113
1431146631521308113

订单号是19位的长度,且订单的最后5位都是一样的,都是08113。且订单号的前面14位部分是单调递增的。

大胆猜测,淘宝的订单ID设计应该是:

订单ID = 时间 + 去重字段 + 用户ID后6位尾号

这样的设计能做到全局唯一,且对分布式系统查询及其友好。

13.4 推荐的主键设计

13.4.1 核心与非核心业务主键策略选择

非核心业务 :对应表的主键自增ID,如告警、日志、监控等信息。

核心业务 :主键设计至少应该是全局唯一且是单调递增。全局唯一保证在各系统之间都是唯一的,单调 递增是希望插入时不影响数据库性能。推荐使用MySQL8.0 改造为有序UUID,具体通过函数uuid_to_bin(@uuid,true)将UUID转化为有序UUID

13.4.2 UUID的特点

这里推荐最简单的一种主键设计:UUID。

全局唯一,占用36字节,数据无序,插入性能差。

认识UUID:

  • 为什么UUID是全局唯一的?
  • 为什么UUID占用36个字节?
  • 为什么UUID是无序的?

MySQL数据库的UUID组成如下所示:

UUID = 时间+UUID版本(16字节)- 时钟序列(4字节) - MAC地址(12字节)

我们以UUID值e0ea12d4-6473-11eb-943c-00155dbaa39d举例:

为什么UUID是全局唯一的? 

在UUID中时间部分占用60位,存储的类似TIMESTAMP的时间戳,但表示的是从1582-10-15 00:00:00.00 到现在的100ns的计数。可以看到UUID存储的时间精度比TIMESTAMPE更高,时间维度发生重复的概率降低到1/100ns

时钟序列是为了避免时钟被回拨导致产生时间重复的可能性。MAC地址用于全局唯一

为什么UUID占用36个字节?

UUID根据字符串进行存储,设计时还带有无用"-"字符串,因此总共需要36个字节。

为什么UUID是随机无序的呢?

因为UUID的设计中,将时间低位放在最前面,而这部分的数据是一直在变化的,并且是无序。

13.4.3 MySQL 8.0主键方案:有序UUID

改造为有序:若将时间高低位互换,则时间就是单调递增的了,也就变得单调递增了。MySQL 8.0可以更换时间低位和时间高位的存储方式,这样UUID就是有序的UUID了。

优化空间占用:MySQL 8.0还解决了UUID存在的空间占用的问题,除去了UUID字符串中无意义的"-"字符串,并且将字符串用二进制类型保存,这样存储空间降低为了16字节。

可以通过MySQL8.0提供的uuid_to_bin函数实现上述功能,同样的,MySQL也提供了bin_to_uuid函数进行转化:

SET @uuid = UUID();
SELECT @uuid,uuid_to_bin(@uuid),uuid_to_bin(@uuid,TRUE);

通过函数uuid_to_bin(@uuid,true)将UUID转化为有序UUID了。全局唯一 + 单调递增,这不就是我们想要的主键!

有序UUID性能测试:

16字节的有序UUID,相比之前8字节的自增ID,性能和存储空间对比究竟如何呢?

我们来做一个测试,插入1亿条数据,每条数据占用500字节,含有3个二级索引,最终的结果如下所示:

从上图可以看到插入1亿条数据有序UUID是最快的,而且在实际业务使用中有序UUID在 业务端就可以生成 。还可以进一步减少SQL的交互次数。

另外,虽然有序UUID相比自增ID多了8个字节,但实际只增大了3G的存储空间,还可以接受。

在当今的互联网环境中,非常不推荐自增ID作为主键的数据库设计。更推荐类似有序UUID的全局 唯一的实现。

另外在真实的业务系统中,主键还可以加入业务和系统属性,如用户的尾号,机房的信息等。这样 的主键设计就更为考验架构师的水平了。

13.4.4 MySQL8.0之前主键方案:手动赋值

手动赋值字段做主键!

比如,设计各个分店的会员表的主键,因为如果每台机器各自产生的数据需要合并,就可能会出现主键重复的问题。

可以在总部 MySQL 数据库中,有一个管理信息表,在这个表中添加一个字段,专门用来记录当前会员编号的最大值。

门店在添加会员的时候,先到总部 MySQL 数据库中获取这个最大值,在这个基础上加 1,然后用这个值作为新会员的“id”,同时,更新总部 MySQL 数据库管理信息表中的当前会员编号的最大值。

这样一来,各个门店添加会员的时候,都对同一个总部 MySQL 数据库中的数据表字段进行操作,就解决了各门店添加会员时会员编号冲突的问题。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/22478.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Fourier分析入门——第4章——频率域

目录 第 4 章 频率域(The Frequency Domain) 4.1 频谱分析(Spectral Analysis) 4.2 物理单位(Physics units) 4.3 笛卡尔坐标形式与极坐标形式对比 4.4 频谱分析的复数形式 4.5 复数值Fourier系数 4.6 复数值的和三角的Fourier系数之间的关系 4.7 2维或多维离散Fouri…

内容好但流量差?B站流量密码可能就在这

B站知名数码UP主老师好我叫何同学&#xff08;以下简称“何同学”。&#xff09;时隔两个月再次更新&#xff0c;这支标题为《为了找到流量密码&#xff0c;我们做了个假B站...》的视频不仅吸引了观众的围观&#xff0c;更是获得了众多B站UP主们的“声援”。 如题所见&#xf…

K8s in Action 阅读笔记——【3】Pods: running containers in Kubernetes

K8s in Action 阅读笔记——【3】Pods: running containers in Kubernetes 3.1 Introducing pods 在Kubernetes中&#xff0c;Pod是基本构建块之一&#xff0c;由容器集合组成。与独立部署容器不同&#xff0c;你总是要部署和操作一个Pod。Pod并不总是包含多个容器&#xff0…

如何高效地在网上找开源项目

开源项目是发展技能、分享想法和成为开发社区一员的好方法。开源意味着软件功能背后的源代码与所有想要阅读它的人公开共享。这意味着你可以准确地看到一个系统是如何工作的——一旦你愿意冒险&#xff0c;就为它做出贡献。除了向所有人开放贡献外&#xff0c;这种开放代码库通…

经典JavaScript手写面试题和答案

文章目录 实现一个函数去重&#xff1f;实现一个函数&#xff0c;判断指定元素在数组中是否存在&#xff1f;实现一个函数&#xff0c;将给定字符串反转&#xff1f;实现一个函数&#xff0c;检测指定字符串是否为回文&#xff08;即从前往后和从后往前的字符序列都相同&#x…

Systrace系列4 —— SystemServer 解读

本文主要是对 SystemServer 进行简单介绍,介绍了 SystemServer 中几个比较重要的线程,由于 Input 和 Binder 比较重要,所以单独拿出来讲,在这里就没有再涉及到。 窗口动画 Systrace 中的 SystemServer 一个比较重要的地方就是窗口动画,由于窗口归 SystemServer 来管,那么…

react学习3 生命周期

componentDidMount()与render()一个级别的&#xff0c;在组件挂载完成之后调用 卸载组件&#xff1a;REACTDOM.unmountComponentAtNode() componentWillUnmount() 组件马上被卸载的时候 老生命周期&#xff1a; 新的生命周期&#xff1a; 废弃了&#xff08;加上Unsate_还是…

RabbitMQ --- 死信交换机(一)

前言 当我们在使用消息队列时&#xff0c;难免会遇到一些消息被拒绝&#xff0c;重复投递或者超时等异常情况。这些异常消息如果不被正确处理&#xff0c;将会阻碍整个消息系统的正常运行。而此时&#xff0c;死信交换机&#xff08;Dead Letter Exchange&#xff0c;简称DLX&…

FAT NTFS Ext3文件系统有什么区别

10 年前 FAT 文件系统还是常见的格式&#xff0c;而现在 Windows 上主要是 NTFS&#xff0c;Linux 上主要是Ext3、Ext4 文件系统。关于这块知识&#xff0c;一般资料只会从支持的磁盘大小、数据保护、文件名等各种维度帮你比较&#xff0c;但是最本质的内容却被一笔带过。它们最…

MySQL-索引(2)

本文主要讲解MySQL-索引相关的知识点 联合索引前缀索引覆盖索引索引下推索引的优缺点什么时候适合创建索引,什么时候不适合?如何优化索引 ? 索引失效场景 ? 为什么SQL语句使用了索引,却还是慢查询 ? 使用索引有哪些注意事项 ? InnoDB引擎中的索引策略 目录 联合索引 联合…

【C++】函数重载 - 给代码增添多彩的魔法

欢迎来到博主 Apeiron 的博客&#xff0c;祝您旅程愉快 &#xff01; 时止则止&#xff0c;时行则行。动静不失其时&#xff0c;其道光明。 目录 1、缘起 2、函数重载概述 3、函数重载注意事项 4、总结 1、缘起 函数重载&#xff0c;是编程世界中的一抹迷人色彩&#xff0c…

动态规划-状态压缩DP

[SCOI2005] 互不侵犯 题目描述 https://www.luogu.com.cn/problem/P1896 在NN的棋盘里面放K个国王&#xff0c;使他们互不攻击&#xff0c;共有多少种摆放方案。国王能攻击到它上下左右&#xff0c;以及左上左下右上右下八个方向上附近的各一个格子&#xff0c;共8个格子。 …

堪比ChatGPT,Claude注册和使用教程

新建了一个网站 https://ai.weoknow.com/ 每天给大家更新可用的国内可用chatGPT资源 Claude简介 Claude是一款人工智能聊天机器人。主要有以下特征: 使用自己的模型与训练方法,而不是基于GPT-3等开源框架。模型采用Transformer编码器与解码器的结构,并使用对话上下文的双向…

实验六 自动驾驶建模与仿真

【实验目的】 了解Matlab/Simulink软件环境&#xff0c;熟悉Simulink建模步骤&#xff1b;了解车辆运动控制的基本原理&#xff0c;学会简单的车辆运动控制建模及仿真&#xff1b;了解自动驾驶建模的基本过程&#xff0c;了解典型ADAS系统模型的应用特点。了解自动驾驶相关函数…

老司机解读香农定理、奈奎斯特定理、编码与调制

工程师都会考虑一个问题&#xff1a;信道上到底可以传输多大的数据&#xff0c;或者指定的信道上的极限传输率是多少。这就是信道容量的问题。例如&#xff0c;在xDSL系统中&#xff0c;我们使用的传输介质是仅有几兆带宽的电话线&#xff0c;而上面要传送几兆、十几兆甚至几十…

用 Python 写 3D 游戏

vizard介绍 Vizard是一款虚拟现实开发平台软件&#xff0c;从开发至今已走过十个年头。它基于C/C&#xff0c;运用新近OpenGL拓展模块开发出的高性能图形引擎。当运用Python语言执行开发时&#xff0c;Vizard同时自动将编写的程式转换为字节码抽象层(LAXMI)&#xff0c;进而运行…

WorkPlus AI助理 | 将企业业务场景与ChatGPT结合

近年来&#xff0c;人工智能成为了企业数字化转型的热门话题&#xff0c;作为被训练的语言模型&#xff0c;ChatGPT具备模拟对话、回答问题、写代码、写小说、进行线上内容创作的能力&#xff0c;还能根据聊天的上下文进行互动。作为一款新兴的人工智能应用程序&#xff0c;对于…

【IDEA】DeBug(图文并茂)

文章目录 01_Debug简介和意义02_IDEA中的Debug步骤03_跳转到当前代码执行的行04_步过调试的使用05_步入调试的使用06_强制步入调试的使用07_步出调试的使用08_回退断点调试的使用09_运行到光标处10_计算表达式11_条件断点12_多线程调试 IDAEA&#xff08;Interactive Data Anal…

【Linux高级 I/O(3)】如何使用阻塞 I/O 与非阻塞 I/O?——poll()函数

poll()函数介绍 系统调用 poll()与 select()函数很相似&#xff0c;但函数接口有所不同。在 select()函数中&#xff0c;我们提供三个 fd_set 集合&#xff0c;在每个集合中添加我们关心的文件描述符&#xff1b;而在 poll()函数中&#xff0c;则需要构造一个 struct pollfd 类…

分享18个好用的ChatGPT插件

上周ChatGPT又进化了&#xff0c;支持联网还有70几种第三方插件&#xff0c;不过还是老样子&#xff0c;只服务氪金玩家&#xff0c;免费端可能还得等等。之前只开放了俩插件&#xff0c;网络浏览器和代码解释器&#xff0c;只能说是真的不够用。 ChatGPT&#xff1a;不够&…