DALI1.0学习——BIT解码

最近在学习DALI调光相关知识并下载了Microchip提供的基于ATMega88PA的软件工程及硬件设计参考方案。写这些文章的目的就是把自己对知识的理解作一些梳理。

芯片厂果然专业,考虑得相当周到,为了芯片销量连软件和硬件方案全都提供了。芯片厂关于DALI1.0实现的软硬件参考链接地址如下:Salesforceicon-default.png?t=N7T8https://microchip.my.salesforce.com/sfc/p/#o0000000KAkK/a/3l000001Iuci/0yucLkmht5A3PuLOo2MVtWQlQA1Ca1FgNK1KkCKafeg

Firmware部分是DALI1.0实现的源代码,包括底层驱动及上层应用,使用AVR系列专用开发IDE:Microchip Studio。

这一篇主要理解下如何解码主机发送来的BIT信号,重点是dali_bit.c文件,关于DALI主机发送数据的时序可以参考这篇博文:DALI通信及C语言实现 - 斑鸠,一生。 - 博客园 (cnblogs.com)

主机和从机通信使用半双工,波特率为1200,参考示例中从机使用GPIO的边沿跳变(上升沿和下降沿都触发)结合定时器来解码主机发送来的信号,具体配置如下:

1、GPIO为双边沿跳变中断,中断处理完成后定时器计数清零;

2、定时器溢出时间为32微秒。1200BIT/S的波特率传输一个BIT的时间约833微秒,半个BIT,也就是一个TE为416微秒,所以定时器约溢出13次左右,曼切斯特编码是在传输一半BIT时间的时候产生边沿跳变,传输1就是上升沿,0是下降沿;

定时器和GPIO配置完成后,就开始等待主机发送前向帧,从机解析数据的思路如下:

1、总线在没有数据发送时,从机的接收引脚(也就是双边沿跳变引脚)一直是高电平;

2、当主机发送起始号时,从机的接收引脚会检测到一个下降沿,当经过约半个BIT的时间后如果检测到一个上升沿,则证明是有效的起始信号,进入准备接收信号阶段;

3、以后每隔两个TE就读取一次实际传输的BIT,如图1所示,同时不停检测是否有连续4个TE,如果数据接收完成后出现4个连续TE,证明是接收到了停止位,本次数据接收成功,如果数据没有接收完成就出现4个TE说明传输出错;

图1:DALI时序

4、正确检测到停止位后,将接收到的地址和数据递交给上一层进行帧逻辑处理。

再来看源代码文件dali_bit.c,DALI从机的接收引脚边沿跳变中断处理程序dali_bit_pcint_interrupt函数如下:

/**
 * \brief External pin interrupt handler
 *
 * This is the handler for external pin interrupt
 */
void dali_bit_pcint_interrupt(void)
{
	static uint8_t bit_index;
	uint8_t bit_index_temp;
	uint8_t dali_bit_rx;

	bit_index_temp = bit_index;
	pin_level = DALI_INPORT & (1 << DALI_INPUT);
    
	if (status_receive == 0) {
		if (pin_level == LOW) {
			/* dali bus falling edge indicates start bit */
			bit_index_temp = 0;
			status_receive = BIT_START;
			dali_rec_addr = 0;
			dali_rec_data = 0;
		}
	} else if (status_receive == BIT_START) {
		/* dali pin must be high after the second INT0 edge */
		if ((level_time > MIN_TE_CNT) && (level_time < MAX_TE_CNT)) {			
			/* get the start bit and get ready for 16 bit data. */
			status_receive = BIT_0;
			bit_index_temp += 1;
		} else {
			/* Start bit error */
			status_receive = 0;
		}
	} else if (status_receive < BIT_STOP1) {
		if (level_time > MIN_2TE_CNT) {
			/* Long level (2xTe) is detected */
			bit_index_temp += 2;
		} else if ((level_time > MIN_TE_CNT) &&
				(level_time < MAX_TE_CNT)) {
			/* Short level (1xTe) is detected */
			bit_index_temp += 1;
		} else {
			status_receive = 0;
		}

		if (bit_index_temp >= 34) { 
			/* If the last Te is low (dali bit 0), a rising edge is
			 * detected before stop bit */			 
			status_receive = BIT_STOP1;
		}
		
		/* Decode dali bit at every second Te bit */
		if (bit_index_temp & 0x01) {
			/* shift out the lowest bit to get dali bit */			
			dali_bit_rx = bit_index_temp >> 1;
			if (dali_bit_rx <= BIT_7) { //the current bit number, maximum 8 for the address byte
				/* get the address byte */
				dali_rec_addr <<= 1;
				if (pin_level) {
					dali_rec_addr |= 0x01;
				}
			} else {
				/* get the data byte */
				dali_rec_data <<= 1;
				if (pin_level) {
					dali_rec_data |= 0x01;
					if (dali_bit_rx == BIT_15) { 
						/* if the last Te is high (dali bit 1), a Te 
						 * high period is added before stop bit */						 
						status_receive = BIT_STOP2;
					}
				}
			}
		}
	} else {
		status_receive = 0;
	}
	
	dali_slave_set_addr_to_service(dali_rec_addr);
	dali_slave_set_data_to_service(dali_rec_data);
	bit_index = bit_index_temp;
	TCNT0 = 0;
	level_time = 0;
}

代码分析:

1、由于在接收主机发送的数据时会多次进入边沿跳变中断,必须使用静态变量bit_index并结合变量bit_index_temp保存当前已获取的BIT索引,确切的说应该是TE索引,pin_level用于获取从机输入引脚的电平状态,变量status_receive表示当前接收的是起始信号、数据还是停止位;

2、当主机发送起始信号时会触发第一个下降沿,第16行判断如果DALI输入引脚是低电平,则初始化一些变量,并将接收状态转为BIT_START,也就是起始信号;

3、起始信号下降沿触发后,第二次边沿跳变触发时必须是上升沿且触发时间必须是在一个TE周期内才被认为是正常的起始信号,如图2所示,Start部分先有一个下降沿然后一个上升沿才开始发送MSB。变量level_time会在定时器0的溢出中断处理程序中累加,溢出时间约为32微秒(8MHz频率不分频,最大计数256,溢出时间 = 256/8000000),约13个溢出周期后就是一个TE的时间:416微秒左右,当然这个时间不可能刚好,有正负5个溢出周期左右误差范围,所以第25行使用了if ((level_time > MIN_TE_CNT) && (level_time < MAX_TE_CNT))。此时变量bit_index_temp被设置为1,同时status_receive设置为准备接收第一个数据BIT,即BIT_0;

图2:起始信号,先一个下降沿然后一个上升沿

4、正确接收到起始信号后,准备接收地址和数据字节。代码第34行判断只要不是接收停止位就保存当前接收到的BIT。代码第35行到第41行判断:如果是经过两个TE时间才产生边沿跳变中断的话则将bit_index_temp加2,否则加1。当发送不同BIT值时就会出现两个TE后才会出现边沿跳变的情况,例如:前面的比特是0,后面接着是1就会出现连续两个TE的低电平然后产生上升沿跳变,如图3所示;

图3:BIT值改变时会有两个连续TE的高或低电平

5、代码第46行判断当bit_index_temp>=34时就将status_receive切换到接收停止位1,因为包括起始BIT、地址字节和数据字节共17个BIT,也就是34个TE,当接收到最后一个BIT并且是低电平,这里要注意:只有当最后一个BIT是低电平,bit_index_temp才会等于34,高电平应该是33。最后一个BIT是0且它后面出现上升沿则证明接收到的是停止位1

6、代码第53行到76行是解码接收到的BIT值并赋值给地址变量dali_rec_addr和数据变量dali_rec_data。首先第53行使用了if (bit_index_temp & 0x01),bit_index_temp必须为奇数且大于1时if条件才为真。那我们来看一下当接收地址和数据的BIT时,bit_index_temp是不是奇数并且对应的BIT是否正确,如图4所示,当起始位的上升沿产生后bit_index_temp被设置为1,然后从35行到41行根据边沿跳变触发时间将bit_index_temp加2或者加1,我们可以看到bit_index_temp确实是在每次为奇数时才读取接收到的BIT,为节省空间在图中我把bit_index_temp改为了bit_idx。

第1个红点位置:也就是有效起始信号上升沿中断时bit_idx = 1

第2个红点位置:由于经过两个TE才产生下降沿中断,bit_idx执行了加2,变成3,此时if (bit_index_temp & 0x01)条件为真,读取数据刚好是BIT值0,和曼切斯特编码含义一样

第3个红点位置:经过了两个TE产生了上升沿中断,bit_idx执行了加2,变成5,此时if (bit_index_temp & 0x01)条件为真,读取数据刚好是BIT值1,和曼切斯特编码含义一样

第4个红点位置:经过了1个TE产生了下降沿中断,bit_idx执行了加1,变成6,此时if (bit_index_temp & 0x01)条件为假,所以没有读取数据

第5个红点位置:经过了1个TE产生了上升沿中断,bit_idx执行了加1,变成7,此时if (bit_index_temp & 0x01)条件为真,读取数据刚好是BIT值1,和曼切斯特编码含义一样

第6个红点位置:经过了两个TE产生了下降沿中断,bit_idx执行了加2,变成9,此时if (bit_index_temp & 0x01)条件为真,读取数据刚好是BIT值0,和曼切斯特编码含义一样

后面的以此类推,可见确实是bit_index_temp变量为奇数且非起始位时才读取并保存BIT值。

图4:bit_index_temp为奇数时读取数据

7、dali_bit_rx用于判断当前接收到的是地址字节还是数据字节并计算出BIT号,BIT_0到BIT_15,对应值:1-16,小于等于BIT_7时是地址字节,否则就是数据字节。前面说过奇数位获取一次数据,每隔两个值计算一下当前的BIT序号,所以dali_bit_rx = bit_index_temp >> 1。代码第60行和第66行根据当前引脚的电平来保存数据,在第68行判断如果是最后一个数据BIT了,则设置接收状态为停止位2

8、最后几行代码主要将定时器0的计数值清零并且将定时器0溢出次数level_time清零。用局部静态变量保存当前的TE索引号,以便下次产生边沿跳变中断时赋值给bit_index_temp。

DALI1.0的比特解码部分就介绍到这里,后续继续整理其他内容,希望和大家一起学习交流。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/224368.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

redis计数器与数量控制

命令行命令&#xff1a; 127.0.0.1:6379> exists mycounter (integer) 0 127.0.0.1:6379> set mycounter 99 //设置一个值 OK 127.0.0.1:6379> get mycounter //获得一个值 "99" 127.0.0.1:6379> incr mycounter //对计数器进行增加操作 (integer) 100…

论文笔记--A Fine-grained Interpretability Evaluation Benchmark for Neural NLP

论文笔记--A Fine-grained Interpretability Evaluation Benchmark for Neural NLP 1. 文章简介2. 文章概括3 文章重点技术3.1 数据收集3.2 数据扰动3.3 迭代标注和检查根因3.4 度量3.4.1 Token F1-score3.4.2 MAP(Mean Average Precision) 4. 文章亮点5. 原文传送门 1. 文章简…

【从零开始学习JVM | 第四篇】类加载器的分类以及双亲委派机制

前言&#xff1a; 在Java编程中&#xff0c;类加载器(Class Loader)扮演着重要的角色。类加载器负责加载Java字节码并将其转换为可执行对象&#xff0c;使得我们能够在应用程序中使用各种类和资源。Java类加载器的设计和实现旨在支持动态扩展和模块化编程&#xff0c;为Java语…

使用vue UI安装路由插件

1.使用vue创建项目 vue create vue-appvue ui 2.使用vue ui界面创建管理项目 终端页面输入&#xff1a;vue ui 创建项目 安装完成。可以直接在ui界面运行&#xff0c;也可以在编辑器中使用命令运行 安装路由&#xff0c;安装状态 选择插件 - 添加vue-router、添加vuex 安装…

时间序列预测 — GRU实现多变量多步光伏预测(Tensorflow)

目录 1 数据处理 1.1 数据集简介 1.2 导入库文件 1.3 数据集处理 1.4 训练数据构造 2 模型训练与预测 2.1 模型训练 2.2 模型多步预测 2.3 预测可视化 1 数据处理 1.1 数据集简介 实验数据集采用数据集7&#xff1a;常州普利司通光伏数据集&#xff08;下载链接&…

Redis中HyperLogLog的使用

目录 前言 HyperLogLog 前言 在学习HyperLogLog之前&#xff0c;我们需要先学习两个概念 UV&#xff1a;全称Unique Visitor&#xff0c;也叫独立访客量&#xff0c;是指通过互联网访问、浏览这个网页的自然人。1天内同一个用户多次访问该网站&#xff0c;只记录1次。PV&am…

Ribbon组件的负载均衡原理

原因背景 spring cloud的底层负载均衡是采用Ribbon组件&#xff0c;我们将user-service服务注册到eureka-server中&#xff0c;那么当我们在另一个服务的代码层面请求远程调用API接口http://user-service/users/5时&#xff0c;程序代码如何解析远程调用的user-service服务名转…

PyTorch机器学习与深度学习实践技术应用

近年来&#xff0c;随着AlphaGo、无人驾驶汽车、医学影像智慧辅助诊疗、ImageNet竞赛等热点事件的发生&#xff0c;人工智能迎来了新一轮的发展浪潮。尤其是深度学习技术&#xff0c;在许多行业都取得了颠覆性的成果。另外&#xff0c;近年来&#xff0c;Pytorch深度学习框架受…

在re:Invent大会上,上汽海外出行选择亚马逊云科技为其提供智能网联解决方案

亚马逊云科技在re:Invent 2023上宣布&#xff0c;中国最大的汽车制造商之一、《财富》世界500强企业上汽集团旗下的上汽海外出行科技有限公司&#xff08;以下简称“上汽海外出行”&#xff09;已选择亚马逊云科技为重要云服务供应商&#xff0c;为出海的自主品牌汽车构建领先的…

NFC和蓝牙在物联网中有什么意义?如何选择?

#NFC物联网# #蓝牙物联网# 在物联网中&#xff0c;NFC和蓝牙有什么意义&#xff1f; NFC在物联网中代表近场通信技术。它是一种短距离、高频的无线通信技术&#xff0c;可以在近距离内实现设备间的数据传输和识别。NFC技术主要用于移动支付、电子票务、门禁、移动身份识别、防…

期末速成数据库极简版【查询】(3)

目录 多表查询 【8】多表连接——内连接 &#x1f642;等值连接 &#x1f642;自然连接 &#x1f642;非等值连接 【9】多表连接——外连接 【10】交叉连接不考 【11】联合查询 【12】扩展多表连接 【13】嵌套查询 &#x1f642; 多表查询 【8】多表连接——内连…

QT+Unity3D 超详细(将unity3D与QT进行连接,并实现信息传递)

QTUnity3D连接 在QT中连接unity3D&#xff0c;首先要有一个unity.exe执行文件。在这里不提供unity执行文件的编写&#xff0c;只提供QT这边与unity3D连接和信息传递。 创建项目 创建一个新的项目&#xff0c;我创建的项目名称如下。 下图是我建立新项目的文件。APP文件就是…

Python查看文件列表

os.listdir 是 Python 的一个内置函数&#xff0c;用于列出指定目录中的所有文件和子目录。它接受一个字符串参数&#xff0c;即要列出内容的目录的路径。 列出当前工作目录中的所有文件和子目录 files_and_dirs os.listdir() print(files_and_dirs) 列出指定目录中的所…

User: zhangflink is not allowed to impersonate zhangflink

使用hive2连接进行添加数据是报错&#xff1a; [08S01][1] Error while processing statement: FAILED: Execution Error, return code 1 from org.apache.hadoop.hive.ql.exec.mr.MapRedTask. User: zhangflink is not allowed to impersonate zhangflink 有些文章说需要修…

解决:spring boot+mybatis进行增删改查的时候,接收到前端数据,并且执行成功了,但是数据库里面添加的内容都是空值

在写spring boot整合mybatis的时候&#xff0c;我在Apifox里面测试&#xff0c;数据也传递过去了&#xff0c;后端服务器也接收到了参数&#xff0c;就是数据库里面添加的都是空值&#xff1f;&#xff1f;&#xff1f; 前端接收到了数据&#xff0c;并且没有报错 Apifox里面也…

Kubernetes入门笔记——(2)k8s设计文档

​k8s最初源自谷歌的Brog项目&#xff0c;架构与其类似&#xff0c;主要包括etcd、api server、controller manager、scheduler、kubelet和kube-proxy等组件 etcd&#xff1a;分布式存储&#xff0c;保存k8s集群的状态 api server&#xff1a;资源操作的唯一入口&#xff0c;…

使用GPT-4V解决Pycharm设置问题

pycharm如何实现关联&#xff0c;用中文回答 在PyCharm中关联PDF文件类型&#xff0c;您可以按照以下步骤操作&#xff1a; 1. 打开PyCharm设置&#xff1a;点击菜单栏中的“File”&#xff08;文件&#xff09;&#xff0c;然后选择“Settings”&#xff08;设置&#xff09;。…

STM32——震动传感器点亮LED灯

震动传感器简单介绍 若产品不震动&#xff0c;模块上的 DO 口输出高电平&#xff1b; 若产品震动&#xff0c;模块上的 DO 口输出低电平&#xff0c;D0-LED绿色指示灯亮。 震动传感器与STM32的接线 编程实现 需求&#xff1a;当震动传感器接收到震动信号时&#xff0c;使用中断…

同旺科技 USB TO RS-485 定制款适配器--- 拆解(四)

内附链接 1、USB TO RS-485 定制款适配器 ● 支持USB 2.0/3.0接口&#xff0c;并兼容USB 1.1接口&#xff1b; ● 支持USB总线供电&#xff1b; ● 支持Windows系统驱动&#xff0c;包含WIN10 / WIN11系统32 / 64位&#xff1b; ● 支持Windows RT、Linux、Mac OS X、Windo…

Windows Installer服务启动不了问题解决办法

本章教程主要提供在win10和win11 系统服务Windows Installer&#xff0c;处于灰色状态&#xff0c;无法启动的时候的一种解决方法。 目录 解决办法 1、进入注册表 2、找到以下路径 解决办法 1、进入注册表 regedit 2、找到以下路径 HKEY_LOCAL_MACHINE\SYSTEM\ControlSet00…