AI助力智慧农业,基于YOLOv4开发构建不同参数量级农田场景下庄稼作物、杂草智能检测识别系统

智慧农业随着数字化信息化浪潮的演变有了新的定义,在前面的系列博文中,我们从一些现实世界里面的所见所想所感进行了很多对应的实践,感兴趣的话可以自行移步阅读即可:

《自建数据集,基于YOLOv7开发构建农田场景下杂草检测识别系统》 

《轻量级目标检测模型实战——杂草检测》

《激光除草距离我们实际的农业生活还有多远,结合近期所见所感基于yolov8开发构建田间作物杂草检测识别系统》

《基于yolov5的农作物田间杂草检测识别系统》

《AI助力智慧农业,基于YOLOv3开发构建农田场景下的庄稼作物、田间杂草智能检测识别系统》

《AI助力智慧农业,基于YOLOv5全系列模型【n/s/m/l/x】开发构建不同参数量级农田场景下庄稼作物、杂草智能检测识别系统》

 《AI助力智慧农业,基于YOLOv6最新版本模型开发构建不同参数量级农田场景下庄稼作物、杂草智能检测识别系统》

《AI助力智慧农业,基于YOLOv7【tiny/yolov7/yolov7x】开发构建不同参数量级农田场景下庄稼作物、杂草智能检测识别系统》 

自动化的激光除草,是未来大面积农业规划化作物种植生产过程中非常有效的技术手段,本文是AI助力智慧农业的第五篇系列博文,主要的目的就是想要基于yolov4来开发构建不同参数量级的检测模型,助力智能检测分析。

首先看下实例效果:

简单看下实例数据情况:

实例标注内容如下所示:

如果对如何使用yolov4项目来开发构建自己的目标检测系统有疑问的可以看我前面的超详细博文教程:

《基于官方YOLOv4开发构建目标检测模型超详细实战教程【以自建缺陷检测数据集为例】》

《基于官方YOLOv4-u5【yolov5风格实现】开发构建目标检测模型超详细实战教程【以自建缺陷检测数据集为例】》

本文的项目开发是以第一篇教程为实例进行的,当然了如果想要使用第二篇的教程本质上也都是一样的。

self.names如下:

crop
weed

self.yaml如下:

# path
train: ./dataset/images/train/
val: ./dataset/images/test/
test: ./dataset/images/test/

# number of classes
nc: 2

 
# class names
names: ['crop', 'weed']

train.py如下所示:

import argparse
import logging
import math
import os
import random
import time
from pathlib import Path
from warnings import warn

import numpy as np
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.optim.lr_scheduler as lr_scheduler
import torch.utils.data
import yaml
from torch.cuda import amp
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm

import test  # import test.py to get mAP after each epoch
#from models.yolo import Model
from models.models import *
from utils.autoanchor import check_anchors
from utils.datasets import create_dataloader
from utils.general import labels_to_class_weights, increment_path, labels_to_image_weights, init_seeds, \
    fitness, fitness_p, fitness_r, fitness_ap50, fitness_ap, fitness_f, strip_optimizer, get_latest_run,\
    check_dataset, check_file, check_git_status, check_img_size, print_mutation, set_logging
from utils.google_utils import attempt_download
from utils.loss import compute_loss
from utils.plots import plot_images, plot_labels, plot_results, plot_evolution
from utils.torch_utils import ModelEMA, select_device, intersect_dicts, torch_distributed_zero_first

logger = logging.getLogger(__name__)

try:
    import wandb
except ImportError:
    wandb = None
    logger.info("Install Weights & Biases for experiment logging via 'pip install wandb' (recommended)")

def train(hyp, opt, device, tb_writer=None, wandb=None):
    logger.info(f'Hyperparameters {hyp}')
    save_dir, epochs, batch_size, total_batch_size, weights, rank = \
        Path(opt.save_dir), opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank

    # Directories
    wdir = save_dir / 'weights'
    wdir.mkdir(parents=True, exist_ok=True)  # make dir
    last = wdir / 'last.pt'
    best = wdir / 'best.pt'
    results_file = save_dir / 'results.txt'

    # Save run settings
    with open(save_dir / 'hyp.yaml', 'w') as f:
        yaml.dump(hyp, f, sort_keys=False)
    with open(save_dir / 'opt.yaml', 'w') as f:
        yaml.dump(vars(opt), f, sort_keys=False)

    # Configure
    plots = not opt.evolve  # create plots
    cuda = device.type != 'cpu'
    init_seeds(2 + rank)
    with open(opt.data) as f:
        data_dict = yaml.load(f, Loader=yaml.FullLoader)  # data dict
    with torch_distributed_zero_first(rank):
        check_dataset(data_dict)  # check
    train_path = data_dict['train']
    test_path = data_dict['val']
    nc, names = (1, ['item']) if opt.single_cls else (int(data_dict['nc']), data_dict['names'])  # number classes, names
    assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, opt.data)  # check

    # Model
    pretrained = weights.endswith('.pt')
    if pretrained:
        with torch_distributed_zero_first(rank):
            attempt_download(weights)  # download if not found locally
        ckpt = torch.load(weights, map_location=device)  # load checkpoint
        model = Darknet(opt.cfg).to(device)  # create
        state_dict = {k: v for k, v in ckpt['model'].items() if model.state_dict()[k].numel() == v.numel()}
        model.load_state_dict(state_dict, strict=False)
        print('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights))  # report
    else:
        model = Darknet(opt.cfg).to(device) # create

    # Optimizer
    nbs = 64  # nominal batch size
    accumulate = max(round(nbs / total_batch_size), 1)  # accumulate loss before optimizing
    hyp['weight_decay'] *= total_batch_size * accumulate / nbs  # scale weight_decay

    pg0, pg1, pg2 = [], [], []  # optimizer parameter groups
    for k, v in dict(model.named_parameters()).items():
        if '.bias' in k:
            pg2.append(v)  # biases
        elif 'Conv2d.weight' in k:
            pg1.append(v)  # apply weight_decay
        elif 'm.weight' in k:
            pg1.append(v)  # apply weight_decay
        elif 'w.weight' in k:
            pg1.append(v)  # apply weight_decay
        else:
            pg0.append(v)  # all else

    if opt.adam:
        optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999))  # adjust beta1 to momentum
    else:
        optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)

    optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']})  # add pg1 with weight_decay
    optimizer.add_param_group({'params': pg2})  # add pg2 (biases)
    logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0)))
    del pg0, pg1, pg2

    # Scheduler https://arxiv.org/pdf/1812.01187.pdf
    # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
    lf = lambda x: ((1 + math.cos(x * math.pi / epochs)) / 2) * (1 - hyp['lrf']) + hyp['lrf']  # cosine
    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
    # plot_lr_scheduler(optimizer, scheduler, epochs)

    # Logging
    if wandb and wandb.run is None:
        opt.hyp = hyp  # add hyperparameters
        wandb_run = wandb.init(config=opt, resume="allow",
                               project='YOLOv4' if opt.project == 'runs/train' else Path(opt.project).stem,
                               name=save_dir.stem,
                               id=ckpt.get('wandb_id') if 'ckpt' in locals() else None)

    # Resume
    start_epoch, best_fitness = 0, 0.0
    best_fitness_p, best_fitness_r, best_fitness_ap50, best_fitness_ap, best_fitness_f = 0.0, 0.0, 0.0, 0.0, 0.0
    if pretrained:
        # Optimizer
        if ckpt['optimizer'] is not None:
            optimizer.load_state_dict(ckpt['optimizer'])
            best_fitness = ckpt['best_fitness']
            best_fitness_p = ckpt['best_fitness_p']
            best_fitness_r = ckpt['best_fitness_r']
            best_fitness_ap50 = ckpt['best_fitness_ap50']
            best_fitness_ap = ckpt['best_fitness_ap']
            best_fitness_f = ckpt['best_fitness_f']

        # Results
        if ckpt.get('training_results') is not None:
            with open(results_file, 'w') as file:
                file.write(ckpt['training_results'])  # write results.txt

        # Epochs
        start_epoch = ckpt['epoch'] + 1
        if opt.resume:
            assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (weights, epochs)
        if epochs < start_epoch:
            logger.info('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' %
                        (weights, ckpt['epoch'], epochs))
            epochs += ckpt['epoch']  # finetune additional epochs

        del ckpt, state_dict

    # Image sizes
    gs = 64 #int(max(model.stride))  # grid size (max stride)
    imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size]  # verify imgsz are gs-multiples

    # DP mode
    if cuda and rank == -1 and torch.cuda.device_count() > 1:
        model = torch.nn.DataParallel(model)

    # SyncBatchNorm
    if opt.sync_bn and cuda and rank != -1:
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
        logger.info('Using SyncBatchNorm()')

    # EMA
    ema = ModelEMA(model) if rank in [-1, 0] else None

    # DDP mode
    if cuda and rank != -1:
        model = DDP(model, device_ids=[opt.local_rank], output_device=opt.local_rank)

    # Trainloader
    dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt,
                                            hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect,
                                            rank=rank, world_size=opt.world_size, workers=opt.workers)
    mlc = np.concatenate(dataset.labels, 0)[:, 0].max()  # max label class
    nb = len(dataloader)  # number of batches
    assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (mlc, nc, opt.data, nc - 1)

    # Process 0
    if rank in [-1, 0]:
        ema.updates = start_epoch * nb // accumulate  # set EMA updates
        testloader = create_dataloader(test_path, imgsz_test, batch_size*2, gs, opt,
                                       hyp=hyp, cache=opt.cache_images and not opt.notest, rect=True,
                                       rank=-1, world_size=opt.world_size, workers=opt.workers)[0]  # testloader

        if not opt.resume:
            labels = np.concatenate(dataset.labels, 0)
            c = torch.tensor(labels[:, 0])  # classes
            # cf = torch.bincount(c.long(), minlength=nc) + 1.  # frequency
            # model._initialize_biases(cf.to(device))
            if plots:
                plot_labels(labels, save_dir=save_dir)
                if tb_writer:
                    tb_writer.add_histogram('classes', c, 0)
                if wandb:
                    wandb.log({"Labels": [wandb.Image(str(x), caption=x.name) for x in save_dir.glob('*labels*.png')]})

            # Anchors
            # if not opt.noautoanchor:
            #     check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)

    # Model parameters
    hyp['cls'] *= nc / 80.  # scale coco-tuned hyp['cls'] to current dataset
    model.nc = nc  # attach number of classes to model
    model.hyp = hyp  # attach hyperparameters to model
    model.gr = 1.0  # iou loss ratio (obj_loss = 1.0 or iou)
    model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device)  # attach class weights
    model.names = names

    # Start training
    t0 = time.time()
    nw = max(round(hyp['warmup_epochs'] * nb), 1000)  # number of warmup iterations, max(3 epochs, 1k iterations)
    # nw = min(nw, (epochs - start_epoch) / 2 * nb)  # limit warmup to < 1/2 of training
    maps = np.zeros(nc)  # mAP per class
    results = (0, 0, 0, 0, 0, 0, 0)  # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
    scheduler.last_epoch = start_epoch - 1  # do not move
    scaler = amp.GradScaler(enabled=cuda)
    logger.info('Image sizes %g train, %g test\n'
                'Using %g dataloader workers\nLogging results to %s\n'
                'Starting training for %g epochs...' % (imgsz, imgsz_test, dataloader.num_workers, save_dir, epochs))
    
    torch.save(model, wdir / 'init.pt')
    
    for epoch in range(start_epoch, epochs):  # epoch ------------------------------------------------------------------
        model.train()

        # Update image weights (optional)
        if opt.image_weights:
            # Generate indices
            if rank in [-1, 0]:
                cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2  # class weights
                iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw)  # image weights
                dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n)  # rand weighted idx
            # Broadcast if DDP
            if rank != -1:
                indices = (torch.tensor(dataset.indices) if rank == 0 else torch.zeros(dataset.n)).int()
                dist.broadcast(indices, 0)
                if rank != 0:
                    dataset.indices = indices.cpu().numpy()

        # Update mosaic border
        # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
        # dataset.mosaic_border = [b - imgsz, -b]  # height, width borders

        mloss = torch.zeros(4, device=device)  # mean losses
        if rank != -1:
            dataloader.sampler.set_epoch(epoch)
        pbar = enumerate(dataloader)
        logger.info(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'total', 'targets', 'img_size'))
        if rank in [-1, 0]:
            pbar = tqdm(pbar, total=nb)  # progress bar
        optimizer.zero_grad()
        for i, (imgs, targets, paths, _) in pbar:  # batch -------------------------------------------------------------
            ni = i + nb * epoch  # number integrated batches (since train start)
            imgs = imgs.to(device, non_blocking=True).float() / 255.0  # uint8 to float32, 0-255 to 0.0-1.0

            # Warmup
            if ni <= nw:
                xi = [0, nw]  # x interp
                # model.gr = np.interp(ni, xi, [0.0, 1.0])  # iou loss ratio (obj_loss = 1.0 or iou)
                accumulate = max(1, np.interp(ni, xi, [1, nbs / total_batch_size]).round())
                for j, x in enumerate(optimizer.param_groups):
                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                    x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
                    if 'momentum' in x:
                        x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])

            # Multi-scale
            if opt.multi_scale:
                sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs  # size
                sf = sz / max(imgs.shape[2:])  # scale factor
                if sf != 1:
                    ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]]  # new shape (stretched to gs-multiple)
                    imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)

            # Forward
            with amp.autocast(enabled=cuda):
                pred = model(imgs)  # forward
                loss, loss_items = compute_loss(pred, targets.to(device), model)  # loss scaled by batch_size
                if rank != -1:
                    loss *= opt.world_size  # gradient averaged between devices in DDP mode

            # Backward
            scaler.scale(loss).backward()

            # Optimize
            if ni % accumulate == 0:
                scaler.step(optimizer)  # optimizer.step
                scaler.update()
                optimizer.zero_grad()
                if ema:
                    ema.update(model)

            # Print
            if rank in [-1, 0]:
                mloss = (mloss * i + loss_items) / (i + 1)  # update mean losses
                mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0)  # (GB)
                s = ('%10s' * 2 + '%10.4g' * 6) % (
                    '%g/%g' % (epoch, epochs - 1), mem, *mloss, targets.shape[0], imgs.shape[-1])
                pbar.set_description(s)

                # Plot
                if plots and ni < 3:
                    f = save_dir / f'train_batch{ni}.jpg'  # filename
                    plot_images(images=imgs, targets=targets, paths=paths, fname=f)
                    # if tb_writer:
                    #     tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
                    #     tb_writer.add_graph(model, imgs)  # add model to tensorboard
                elif plots and ni == 3 and wandb:
                    wandb.log({"Mosaics": [wandb.Image(str(x), caption=x.name) for x in save_dir.glob('train*.jpg')]})

            # end batch ------------------------------------------------------------------------------------------------
        # end epoch ----------------------------------------------------------------------------------------------------

        # Scheduler
        lr = [x['lr'] for x in optimizer.param_groups]  # for tensorboard
        scheduler.step()

        # DDP process 0 or single-GPU
        if rank in [-1, 0]:
            # mAP
            if ema:
                ema.update_attr(model)
            final_epoch = epoch + 1 == epochs
            if not opt.notest or final_epoch:  # Calculate mAP
                if epoch >= 3:
                    results, maps, times = test.test(opt.data,
                                                 batch_size=batch_size*2,
                                                 imgsz=imgsz_test,
                                                 model=ema.ema.module if hasattr(ema.ema, 'module') else ema.ema,
                                                 single_cls=opt.single_cls,
                                                 dataloader=testloader,
                                                 save_dir=save_dir,
                                                 plots=plots and final_epoch,
                                                 log_imgs=opt.log_imgs if wandb else 0)

            # Write
            with open(results_file, 'a') as f:
                f.write(s + '%10.4g' * 7 % results + '\n')  # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
            if len(opt.name) and opt.bucket:
                os.system('gsutil cp %s gs://%s/results/results%s.txt' % (results_file, opt.bucket, opt.name))

            # Log
            tags = ['train/box_loss', 'train/obj_loss', 'train/cls_loss',  # train loss
                    'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95',
                    'val/box_loss', 'val/obj_loss', 'val/cls_loss',  # val loss
                    'x/lr0', 'x/lr1', 'x/lr2']  # params
            for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
                if tb_writer:
                    tb_writer.add_scalar(tag, x, epoch)  # tensorboard
                if wandb:
                    wandb.log({tag: x})  # W&B

            # Update best mAP
            fi = fitness(np.array(results).reshape(1, -1))  # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
            fi_p = fitness_p(np.array(results).reshape(1, -1))  # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
            fi_r = fitness_r(np.array(results).reshape(1, -1))  # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
            fi_ap50 = fitness_ap50(np.array(results).reshape(1, -1))  # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
            fi_ap = fitness_ap(np.array(results).reshape(1, -1))  # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
            if (fi_p > 0.0) or (fi_r > 0.0):
                fi_f = fitness_f(np.array(results).reshape(1, -1))  # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
            else:
                fi_f = 0.0
            if fi > best_fitness:
                best_fitness = fi
            if fi_p > best_fitness_p:
                best_fitness_p = fi_p
            if fi_r > best_fitness_r:
                best_fitness_r = fi_r
            if fi_ap50 > best_fitness_ap50:
                best_fitness_ap50 = fi_ap50
            if fi_ap > best_fitness_ap:
                best_fitness_ap = fi_ap
            if fi_f > best_fitness_f:
                best_fitness_f = fi_f

            # Save model
            save = (not opt.nosave) or (final_epoch and not opt.evolve)
            if save:
                with open(results_file, 'r') as f:  # create checkpoint
                    ckpt = {'epoch': epoch,
                            'best_fitness': best_fitness,
                            'best_fitness_p': best_fitness_p,
                            'best_fitness_r': best_fitness_r,
                            'best_fitness_ap50': best_fitness_ap50,
                            'best_fitness_ap': best_fitness_ap,
                            'best_fitness_f': best_fitness_f,
                            'training_results': f.read(),
                            'model': ema.ema.module.state_dict() if hasattr(ema, 'module') else ema.ema.state_dict(),
                            'optimizer': None if final_epoch else optimizer.state_dict(),
                            'wandb_id': wandb_run.id if wandb else None}

                # Save last, best and delete
                torch.save(ckpt, last)
                if best_fitness == fi:
                    torch.save(ckpt, best)
                if (best_fitness == fi) and (epoch >= 200):
                    torch.save(ckpt, wdir / 'best_{:03d}.pt'.format(epoch))
                if best_fitness == fi:
                    torch.save(ckpt, wdir / 'best_overall.pt')
                if best_fitness_p == fi_p:
                    torch.save(ckpt, wdir / 'best_p.pt')
                if best_fitness_r == fi_r:
                    torch.save(ckpt, wdir / 'best_r.pt')
                if best_fitness_ap50 == fi_ap50:
                    torch.save(ckpt, wdir / 'best_ap50.pt')
                if best_fitness_ap == fi_ap:
                    torch.save(ckpt, wdir / 'best_ap.pt')
                if best_fitness_f == fi_f:
                    torch.save(ckpt, wdir / 'best_f.pt')
                if epoch == 0:
                    torch.save(ckpt, wdir / 'epoch_{:03d}.pt'.format(epoch))
                if ((epoch+1) % 25) == 0:
                    torch.save(ckpt, wdir / 'epoch_{:03d}.pt'.format(epoch))
                if epoch >= (epochs-5):
                    torch.save(ckpt, wdir / 'last_{:03d}.pt'.format(epoch))
                elif epoch >= 420: 
                    torch.save(ckpt, wdir / 'last_{:03d}.pt'.format(epoch))
                del ckpt
        # end epoch ----------------------------------------------------------------------------------------------------
    # end training

    if rank in [-1, 0]:
        # Strip optimizers
        n = opt.name if opt.name.isnumeric() else ''
        fresults, flast, fbest = save_dir / f'results{n}.txt', wdir / f'last{n}.pt', wdir / f'best{n}.pt'
        for f1, f2 in zip([wdir / 'last.pt', wdir / 'best.pt', results_file], [flast, fbest, fresults]):
            if f1.exists():
                os.rename(f1, f2)  # rename
                if str(f2).endswith('.pt'):  # is *.pt
                    strip_optimizer(f2)  # strip optimizer
                    os.system('gsutil cp %s gs://%s/weights' % (f2, opt.bucket)) if opt.bucket else None  # upload
        # Finish
        if plots:
            plot_results(save_dir=save_dir)  # save as results.png
            if wandb:
                wandb.log({"Results": [wandb.Image(str(save_dir / x), caption=x) for x in
                                       ['results.png', 'precision-recall_curve.png']]})
        logger.info('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600))
    else:
        dist.destroy_process_group()

    wandb.run.finish() if wandb and wandb.run else None
    torch.cuda.empty_cache()
    return results


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--weights', type=str, default='weights/yolov4-tiny.weights', help='initial weights path')
    parser.add_argument('--cfg', type=str, default='cfg/yolov4-tiny.cfg', help='model.yaml path')
    parser.add_argument('--data', type=str, default='data/self.yaml', help='data.yaml path')
    parser.add_argument('--hyp', type=str, default='data/hyp.scratch.yaml', help='hyperparameters path')
    parser.add_argument('--epochs', type=int, default=100)
    parser.add_argument('--batch-size', type=int, default=8, help='total batch size for all GPUs')
    parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='[train, test] image sizes')
    parser.add_argument('--rect', action='store_true', help='rectangular training')
    parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
    parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
    parser.add_argument('--notest', action='store_true', help='only test final epoch')
    parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')
    parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters')
    parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
    parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
    parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
    parser.add_argument('--device', default='0', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
    parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
    parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset')
    parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer')
    parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
    parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')
    parser.add_argument('--log-imgs', type=int, default=16, help='number of images for W&B logging, max 100')
    parser.add_argument('--workers', type=int, default=8, help='maximum number of dataloader workers')
    parser.add_argument('--project', default='runs/train', help='save to project/name')
    parser.add_argument('--name', default='exp', help='save to project/name')
    parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
    opt = parser.parse_args()

    # Set DDP variables
    opt.total_batch_size = opt.batch_size
    opt.world_size = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1
    opt.global_rank = int(os.environ['RANK']) if 'RANK' in os.environ else -1
    set_logging(opt.global_rank)
    if opt.global_rank in [-1, 0]:
        check_git_status()

    # Resume
    if opt.resume:  # resume an interrupted run
        ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run()  # specified or most recent path
        assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist'
        with open(Path(ckpt).parent.parent / 'opt.yaml') as f:
            opt = argparse.Namespace(**yaml.load(f, Loader=yaml.FullLoader))  # replace
        opt.cfg, opt.weights, opt.resume = '', ckpt, True
        logger.info('Resuming training from %s' % ckpt)
    else:
        # opt.hyp = opt.hyp or ('hyp.finetune.yaml' if opt.weights else 'hyp.scratch.yaml')
        opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_file(opt.cfg), check_file(opt.hyp)  # check files
        assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
        opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size)))  # extend to 2 sizes (train, test)
        opt.name = 'evolve' if opt.evolve else opt.name
        opt.save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok | opt.evolve)  # increment run

    # DDP mode
    device = select_device(opt.device, batch_size=opt.batch_size)
    if opt.local_rank != -1:
        assert torch.cuda.device_count() > opt.local_rank
        torch.cuda.set_device(opt.local_rank)
        device = torch.device('cuda', opt.local_rank)
        dist.init_process_group(backend='nccl', init_method='env://')  # distributed backend
        assert opt.batch_size % opt.world_size == 0, '--batch-size must be multiple of CUDA device count'
        opt.batch_size = opt.total_batch_size // opt.world_size

    # Hyperparameters
    with open(opt.hyp) as f:
        hyp = yaml.load(f, Loader=yaml.FullLoader)  # load hyps
        if 'box' not in hyp:
            warn('Compatibility: %s missing "box" which was renamed from "giou" in %s' %
                 (opt.hyp, 'https://github.com/ultralytics/yolov5/pull/1120'))
            hyp['box'] = hyp.pop('giou')

    # Train
    logger.info(opt)
    if not opt.evolve:
        tb_writer = None  # init loggers
        if opt.global_rank in [-1, 0]:
            logger.info(f'Start Tensorboard with "tensorboard --logdir {opt.project}", view at http://localhost:6006/')
            tb_writer = SummaryWriter(opt.save_dir)  # Tensorboard
        train(hyp, opt, device, tb_writer, wandb)

    # Evolve hyperparameters (optional)
    else:
        # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
        meta = {'lr0': (1, 1e-5, 1e-1),  # initial learning rate (SGD=1E-2, Adam=1E-3)
                'lrf': (1, 0.01, 1.0),  # final OneCycleLR learning rate (lr0 * lrf)
                'momentum': (0.3, 0.6, 0.98),  # SGD momentum/Adam beta1
                'weight_decay': (1, 0.0, 0.001),  # optimizer weight decay
                'warmup_epochs': (1, 0.0, 5.0),  # warmup epochs (fractions ok)
                'warmup_momentum': (1, 0.0, 0.95),  # warmup initial momentum
                'warmup_bias_lr': (1, 0.0, 0.2),  # warmup initial bias lr
                'box': (1, 0.02, 0.2),  # box loss gain
                'cls': (1, 0.2, 4.0),  # cls loss gain
                'cls_pw': (1, 0.5, 2.0),  # cls BCELoss positive_weight
                'obj': (1, 0.2, 4.0),  # obj loss gain (scale with pixels)
                'obj_pw': (1, 0.5, 2.0),  # obj BCELoss positive_weight
                'iou_t': (0, 0.1, 0.7),  # IoU training threshold
                'anchor_t': (1, 2.0, 8.0),  # anchor-multiple threshold
                'anchors': (2, 2.0, 10.0),  # anchors per output grid (0 to ignore)
                'fl_gamma': (0, 0.0, 2.0),  # focal loss gamma (efficientDet default gamma=1.5)
                'hsv_h': (1, 0.0, 0.1),  # image HSV-Hue augmentation (fraction)
                'hsv_s': (1, 0.0, 0.9),  # image HSV-Saturation augmentation (fraction)
                'hsv_v': (1, 0.0, 0.9),  # image HSV-Value augmentation (fraction)
                'degrees': (1, 0.0, 45.0),  # image rotation (+/- deg)
                'translate': (1, 0.0, 0.9),  # image translation (+/- fraction)
                'scale': (1, 0.0, 0.9),  # image scale (+/- gain)
                'shear': (1, 0.0, 10.0),  # image shear (+/- deg)
                'perspective': (0, 0.0, 0.001),  # image perspective (+/- fraction), range 0-0.001
                'flipud': (1, 0.0, 1.0),  # image flip up-down (probability)
                'fliplr': (0, 0.0, 1.0),  # image flip left-right (probability)
                'mosaic': (1, 0.0, 1.0),  # image mixup (probability)
                'mixup': (1, 0.0, 1.0)}  # image mixup (probability)

        assert opt.local_rank == -1, 'DDP mode not implemented for --evolve'
        opt.notest, opt.nosave = True, True  # only test/save final epoch
        # ei = [isinstance(x, (int, float)) for x in hyp.values()]  # evolvable indices
        yaml_file = Path(opt.save_dir) / 'hyp_evolved.yaml'  # save best result here
        if opt.bucket:
            os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket)  # download evolve.txt if exists

        for _ in range(300):  # generations to evolve
            if Path('evolve.txt').exists():  # if evolve.txt exists: select best hyps and mutate
                # Select parent(s)
                parent = 'single'  # parent selection method: 'single' or 'weighted'
                x = np.loadtxt('evolve.txt', ndmin=2)
                n = min(5, len(x))  # number of previous results to consider
                x = x[np.argsort(-fitness(x))][:n]  # top n mutations
                w = fitness(x) - fitness(x).min()  # weights
                if parent == 'single' or len(x) == 1:
                    # x = x[random.randint(0, n - 1)]  # random selection
                    x = x[random.choices(range(n), weights=w)[0]]  # weighted selection
                elif parent == 'weighted':
                    x = (x * w.reshape(n, 1)).sum(0) / w.sum()  # weighted combination

                # Mutate
                mp, s = 0.8, 0.2  # mutation probability, sigma
                npr = np.random
                npr.seed(int(time.time()))
                g = np.array([x[0] for x in meta.values()])  # gains 0-1
                ng = len(meta)
                v = np.ones(ng)
                while all(v == 1):  # mutate until a change occurs (prevent duplicates)
                    v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
                for i, k in enumerate(hyp.keys()):  # plt.hist(v.ravel(), 300)
                    hyp[k] = float(x[i + 7] * v[i])  # mutate

            # Constrain to limits
            for k, v in meta.items():
                hyp[k] = max(hyp[k], v[1])  # lower limit
                hyp[k] = min(hyp[k], v[2])  # upper limit
                hyp[k] = round(hyp[k], 5)  # significant digits

            # Train mutation
            results = train(hyp.copy(), opt, device, wandb=wandb)

            # Write mutation results
            print_mutation(hyp.copy(), results, yaml_file, opt.bucket)

        # Plot results
        plot_evolution(yaml_file)
        print(f'Hyperparameter evolution complete. Best results saved as: {yaml_file}\n'
              f'Command to train a new model with these hyperparameters: $ python train.py --hyp {yaml_file}')

终端执行即可启动训练,本文选择的是tiny系列的模型来进行开发训练的,终端日志输出如下所示:

训练完成截图如下:

结果文件如下所示:

weights目录如下所示:

Label数据可视化如下所示:

整体训练过程可视化如下所示:

【PR曲线】
精确率-召回率曲线(Precision-Recall Curve)是一种用于评估二分类模型性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)和召回率(Recall)之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
绘制精确率-召回率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率和召回率。
将每个阈值下的精确率和召回率绘制在同一个图表上,形成精确率-召回率曲线。
根据曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
精确率-召回率曲线提供了更全面的模型性能分析,特别适用于处理不平衡数据集和关注正例预测的场景。曲线下面积(Area Under the Curve, AUC)可以作为评估模型性能的指标,AUC值越高表示模型的性能越好。
通过观察精确率-召回率曲线,我们可以根据需求选择合适的阈值来权衡精确率和召回率之间的平衡点。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。

【Batch计算实例】

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/224211.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【开源】基于JAVA的APK检测管理系统

项目编号&#xff1a; S 038 &#xff0c;文末获取源码。 \color{red}{项目编号&#xff1a;S038&#xff0c;文末获取源码。} 项目编号&#xff1a;S038&#xff0c;文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 数据中心模块2.2 开放平台模块2.3 软…

翻译: 大语言模型LLMs能做什么和不能做什么 保存笔记What LLMs can and cannot do

生成式 AI 是一项惊人的技术&#xff0c;但它并非万能。在这个视频中&#xff0c;我们将仔细看看大型语言模型&#xff08;LLM&#xff09;能做什么&#xff0c;不能做什么。我们将从我发现的一个有用的心理模型开始&#xff0c;了解它能做什么&#xff0c;然后一起看看 LLM 的…

ThreadX开源助力Microsoft扩大应用范围:对比亚马逊AWS的策略差异

全球超过120亿台设备正在运行ThreadX&#xff0c;这是一款专为资源受限环境设计的实时操作系统。该操作系统在微控制器和小型处理器上表现出色&#xff0c;以极高的可靠性和精确的时间控制处理任务而闻名。 ThreadX曾是英特尔芯片管理引擎的引擎&#xff0c;并且是控制Raspber…

unity 2d 入门 飞翔小鸟 飞翔脚本(五)

新建c#脚本 using System.Collections; using System.Collections.Generic; using UnityEngine;public class Fly : MonoBehaviour {//获取小鸟&#xff08;刚体&#xff09;private Rigidbody2D bird;//速度public float speed;// Start is called before the first frame up…

挑选数据可视化工具:图表类型、交互功能与数据安全

作为一名数据分析师&#xff0c;我经常需要使用各种数据可视化工具来将数据以直观、清晰的方式呈现出来&#xff0c;以便更好地理解和分析。在市面上的众多可视化工具中&#xff0c;我根据实际需求和项目特点进行选择。本文将从以下几个角度对市面上的数据可视化工具进行对比&a…

Ros智行mini,opencv,Gmapping建图,自主导航auto_slam,人脸识别,语音控制

功能 一、Gmapping建图 二、自主导航 起始点 、终点 三、人脸识别 四、语音控制 完成任务: 机器人先建图 建完图后给出目标点&#xff0c;机器人就可以完成调用自主导航走到目标点&#xff0c;期间会调用激光雷达扫描局部环境来进行自主避障&#xff0c;到达终点后进行语音…

指针(进阶)

指针进阶&#xff1a; 通过指针基础我们已经了解了指针&#xff0c;这篇文章我们会举大量的例子&#xff0c;使我们对指针透彻理解&#xff0c;我们下来看一段代码&#xff1a; int main() {char a[] "ab";char* pc a;printf("%c\n", *pc);printf("…

线上项目修改最后一招 修改jar中的文件并重新打包成jar

解压jar包 在要操作的jar文件上边cmd打开命令提示符窗口&#xff08;windows系统&#xff09;&#xff0c; 在cmd命令下执行 jar -xvf xxx.jar 解压jar包&#xff08;其中xxx.jar换成你的jar包名&#xff09; jar -xvf admin-1.0.0.jar 替换或者更改操作 如果要替换jar压缩…

qt 5.15.2 主窗体菜单工具栏树控件功能

qt 5.15.2 主窗体菜单工具栏树控件功能 显示主窗体效果&#xff1a; mainwindow.h文件内容&#xff1a; #ifndef MAINWINDOW_H #define MAINWINDOW_H#include <QMainWindow> #include <QFileDialog> #include <QString> #include <QMessageBox>#inc…

浅谈web性能测试

什么是性能测试&#xff1f; web性能应该注意些什么&#xff1f; 性能测试&#xff0c;简而言之就是模仿用户对一个系统进行大批量的操作&#xff0c;得出系统各项性能指标和性能瓶颈&#xff0c;并从中发现存在的问题&#xff0c;通过多方协助调优的过程。而web端的性能测试…

ChatGPT能帮助--掌握各种AI绘图工具,随意生成各类型性图像

2023年随着OpenAI开发者大会的召开&#xff0c;最重磅更新当属GPTs&#xff0c;多模态API&#xff0c;未来自定义专属的GPT。微软创始人比尔盖茨称ChatGPT的出现有着重大历史意义&#xff0c;不亚于互联网和个人电脑的问世。360创始人周鸿祎认为未来各行各业如果不能搭上这班车…

〖大前端 - 基础入门三大核心之JS篇㊼〗- BOM基础之window对象

说明&#xff1a;该文属于 大前端全栈架构白宝书专栏&#xff0c;目前阶段免费&#xff0c;如需要项目实战或者是体系化资源&#xff0c;文末名片加V&#xff01;作者&#xff1a;不渴望力量的哈士奇(哈哥)&#xff0c;十余年工作经验, 从事过全栈研发、产品经理等工作&#xf…

Caché/M 数据库系统 InterSystems IRIS 的 Windows 安装

针对 InterSystems IRIS 数据库的一些基本概念。 InterSystems IRIS 是什么 InterSystems IRIS 是基于 Cach/M 语言开发的一个数据库&#xff0c;这个数据库被大量使用在医疗系统中&#xff0c;也是北美地区医疗系统病历和文件管理中默认使用的事实标准。 Cach/M 是什么 Ca…

亚马逊云科技Serverless视频内容摘要提取方案

概述 随着GenAI的普及&#xff0c;视频内容摘要生成成为一个备受关注的领域。通过将视频内容转化为文本&#xff0c;可以探索到更广泛的应用场景&#xff0c;其中包括&#xff1a; 视频搜索与索引&#xff1a;将视频内容转化为文本形式&#xff0c;可以方便地进行搜索和索引操作…

Zabbix自定义飞书webhook告警媒介2

说明:适用于7.0及以上版本,低版本可能会有问题。 参数如下: 名称 值EVENT.DURATION{EVENT.DURATION}EVENTDATE

AWS re:Invent 2023-亚马逊云科技全球年度技术盛会

一:会议地址 2023 re:Invent 全球大会主题演讲 - 亚马逊云科技从基础设施和人工智能/机器学习创新,到云计算领域的最新趋势与突破,倾听亚马逊云科技领导者谈论他们最关心的方面。https://webinar.amazoncloud.cn/reInvent2023/keynotes.html北京时间2023年12月1日00:30-02:…

Java架构师系统架构设计原则应用

目录 1 导语2 如何设计高并发系统:局部并发原则3 如何设计高并发系统:服务化与拆分4 高可用系统有哪些设计原则?5 如何保持简单轻量的架构-DRY、KISS,YAGNI原则6 如何设计组件间的交互和行为-HCLC,CQS,SOC7 框架层面的发展趋势-约定大于配置想学习架构师构建流程请跳转:…

一v一聊天

服务端 package 一对一用户;import java.awt.BorderLayout; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.net.ServerSocket; import java.net.Socket; import java.util.Vector;…

mysql5.7安装详细教程

文章目录 1 引言1.1 现有的数据存储方式有哪些&#xff1f;1.2 以上存储方式存在哪些缺点&#xff1f; 2 数据库2.1 概念2.2 数据库的分类 3 数据库管理系统3.1 概念3.2 常见数据库管理系统 4 MySQL4.1 简介4.2 访问与下载4.3 安装4.3.1 解压缩到非中文目录4.3.2 编写配置文件4…

华为数通---配置端口安全案例

端口安全简介 端口安全&#xff08;Port Security&#xff09;通过将接口学习到的动态MAC地址转换为安全MAC地址&#xff08;包括安全动态MAC、安全静态MAC和Sticky MAC&#xff09;&#xff0c;阻止非法用户通过本接口和交换机通信&#xff0c;从而增强设备的安全性。 组网需…