语义分割 LR-ASPP网络学习笔记 (附代码)

论文地址:https://arxiv.org/abs/1905.02244

代码地址:https://github.com/WZMIAOMIAO/deep-learning-for-image-processing/tree/master/pytorch_segmentation/lraspp

1.是什么?

LR-ASPP是一个轻量级语义分割网络,它是在MobileNetV3论文中提出来的,非常适合移动端部署。相比于其他语义分割网络,LR-ASPP在精度上有所牺牲,但在速度上有很大的提升。LR-ASPP的推理时间在CPU上只需要0.3秒,而且它的网络结构也非常简单。

2.为什么?

LR-ASPP 和 DeepLab V3 中的 ASPP 都是用于语义分割任务的分割解码器,但它们在一些方面有不同的创新点和设计思路。

简化结构:LR-ASPP 相对于传统的 ASPP 结构进行了简化。传统的 ASPP 通常包含多个并行的卷积分支(DeepLab v2 中有 4 个,DeepLab v3 中有 5 个),每个分支使用不同膨胀率的膨胀卷积来捕捉不同尺度的上下文信息。而 LR-ASPP 通过减少分支数量和膨胀卷积的膨胀率,降低了计算复杂性,使得模型更适合在资源受限的移动设备上使用。

节省计算资源:由于在移动设备上计算资源有限,LR-ASPP 的设计考虑了计算效率的问题。相比于 DeepLab V3 中的 ASPP,LR-ASPP 在保持一定的性能的前提下,减少了计算量,使得模型能够更好地适应移动设备的硬件限制。

高效的语义分割:LR-ASPP 在移动设备上表现出较好的分割性能。它能够有效地捕捉不同尺度的上下文信息,从而更准确地对图像中的像素进行语义分类。同时,由于其计算效率的优势,LR-ASPP 在移动设备上可以实现实时的语义分割,适用于许多实际应用场景。

总体而言,LR-ASPP 是 MobileNetV3 中的一项创新,它在计算效率和性能之间取得了良好的平衡,为移动设备上的语义分割任务提供了高效而有效的解决方案。而 DeepLab V3 中的 ASPP 则是传统 ASPP 的一种改进版本,它在大规模计算资源的情况下可以取得较好的性能。
 

3.怎么样?

3.1网络结构

 在语义分割任务中,Backbone 为 MobileNet v3,但进行了一些改动:

  1. Backbone 不再进行 32 倍下采样,而是仅进行 16 倍下采样
  2. Backbone 中最后的几个 BottleNet 中使用膨胀卷积

在一般的语义分割任务,Backbone 通常会进行 8 倍下采样,而 MobileNet v3 LR-ASPP 为了使模型更加轻量化,于是进行了 16 倍 下采样。3.2原理分析3.3代码实现

接下来我们看一下分割头(Segmentation Head),也就是 LR-ASPP。在 Backbone 输出上分成了两个分支,如上图所示:

【第一个分支】上面的分支通过一个简单的 1 × 1 卷积(bias=False)汉堡包结构,即 Conv -> BN -> ReLU,得到一个输出特征图 F_{1}
 
【第二个分支】第二分支通过一个 核大小为 49 × 49 ,步长为 [ 16 , 20 ]  的全局平均池化层(AvgPooling Layer),之后再通过一个 1 × 1 的普通卷积(bias=False) + Sigmoid,得到一个输出特征图F_{2 }

根据观察源码,F_{1}分支中的 ReLU 就是普通的 ReLU 而非 ReLU6
F_{2 }分支中的 Bilinear Upsample 其实是不需要的(正常来说,通过 Sigmoid 层后得到的就是长度为 128 的向量)
F_{2 }分支中的 AdaptiveAvgPool2d -> 1×1 Conv -> Sigmoid 与 MobileNet v3 中提出的 Squeeze-and-Excitation(SE)注意力模块非常相似

【第一次融合】F_{1\bigotimes }F_{2}之后,经过双线性插值进行 2 倍上采样,之后再经过普通的 1 × 1 1 \times 11×1 卷积,得到输出特征图 F_{3}
【第三个分支】将 Backbone 中经过 8 倍下采样的特征图拿出来,经过 普通的 1 × 1 卷积得到输出特征图F_{4}
【第二次融合】F_{3}\bigotimes F_{4}=F_{5},得到 LR-ASPP 的输出特征图。
之后需要进行 8 倍双线性插值上采样得到和我输入图片一样大小的单通道图片,即F_{OUT}

3.2代码实现

mobilenet_backbone

from typing import Callable, List, Optional

import torch
from torch import nn, Tensor
from torch.nn import functional as F
from functools import partial


def _make_divisible(ch, divisor=8, min_ch=None):
    """
    This function is taken from the original tf repo.
    It ensures that all layers have a channel number that is divisible by 8
    It can be seen here:
    https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
    """
    if min_ch is None:
        min_ch = divisor
    new_ch = max(min_ch, int(ch + divisor / 2) // divisor * divisor)
    # Make sure that round down does not go down by more than 10%.
    if new_ch < 0.9 * ch:
        new_ch += divisor
    return new_ch


class ConvBNActivation(nn.Sequential):
    def __init__(self,
                 in_planes: int,
                 out_planes: int,
                 kernel_size: int = 3,
                 stride: int = 1,
                 groups: int = 1,
                 norm_layer: Optional[Callable[..., nn.Module]] = None,
                 activation_layer: Optional[Callable[..., nn.Module]] = None,
                 dilation: int = 1):
        padding = (kernel_size - 1) // 2 * dilation
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        if activation_layer is None:
            activation_layer = nn.ReLU6
        super(ConvBNActivation, self).__init__(nn.Conv2d(in_channels=in_planes,
                                                         out_channels=out_planes,
                                                         kernel_size=kernel_size,
                                                         stride=stride,
                                                         dilation=dilation,
                                                         padding=padding,
                                                         groups=groups,
                                                         bias=False),
                                               norm_layer(out_planes),
                                               activation_layer(inplace=True))
        self.out_channels = out_planes


class SqueezeExcitation(nn.Module):
    def __init__(self, input_c: int, squeeze_factor: int = 4):
        super(SqueezeExcitation, self).__init__()
        squeeze_c = _make_divisible(input_c // squeeze_factor, 8)
        self.fc1 = nn.Conv2d(input_c, squeeze_c, 1)
        self.fc2 = nn.Conv2d(squeeze_c, input_c, 1)

    def forward(self, x: Tensor) -> Tensor:
        scale = F.adaptive_avg_pool2d(x, output_size=(1, 1))
        scale = self.fc1(scale)
        scale = F.relu(scale, inplace=True)
        scale = self.fc2(scale)
        scale = F.hardsigmoid(scale, inplace=True)
        return scale * x


class InvertedResidualConfig:
    def __init__(self,
                 input_c: int,
                 kernel: int,
                 expanded_c: int,
                 out_c: int,
                 use_se: bool,
                 activation: str,
                 stride: int,
                 dilation: int,
                 width_multi: float):
        self.input_c = self.adjust_channels(input_c, width_multi)
        self.kernel = kernel
        self.expanded_c = self.adjust_channels(expanded_c, width_multi)
        self.out_c = self.adjust_channels(out_c, width_multi)
        self.use_se = use_se
        self.use_hs = activation == "HS"  # whether using h-swish activation
        self.stride = stride
        self.dilation = dilation

    @staticmethod
    def adjust_channels(channels: int, width_multi: float):
        return _make_divisible(channels * width_multi, 8)


class InvertedResidual(nn.Module):
    def __init__(self,
                 cnf: InvertedResidualConfig,
                 norm_layer: Callable[..., nn.Module]):
        super(InvertedResidual, self).__init__()

        if cnf.stride not in [1, 2]:
            raise ValueError("illegal stride value.")

        self.use_res_connect = (cnf.stride == 1 and cnf.input_c == cnf.out_c)

        layers: List[nn.Module] = []
        activation_layer = nn.Hardswish if cnf.use_hs else nn.ReLU

        # expand
        if cnf.expanded_c != cnf.input_c:
            layers.append(ConvBNActivation(cnf.input_c,
                                           cnf.expanded_c,
                                           kernel_size=1,
                                           norm_layer=norm_layer,
                                           activation_layer=activation_layer))

        # depthwise
        stride = 1 if cnf.dilation > 1 else cnf.stride
        layers.append(ConvBNActivation(cnf.expanded_c,
                                       cnf.expanded_c,
                                       kernel_size=cnf.kernel,
                                       stride=stride,
                                       dilation=cnf.dilation,
                                       groups=cnf.expanded_c,
                                       norm_layer=norm_layer,
                                       activation_layer=activation_layer))

        if cnf.use_se:
            layers.append(SqueezeExcitation(cnf.expanded_c))

        # project
        layers.append(ConvBNActivation(cnf.expanded_c,
                                       cnf.out_c,
                                       kernel_size=1,
                                       norm_layer=norm_layer,
                                       activation_layer=nn.Identity))

        self.block = nn.Sequential(*layers)
        self.out_channels = cnf.out_c
        self.is_strided = cnf.stride > 1

    def forward(self, x: Tensor) -> Tensor:
        result = self.block(x)
        if self.use_res_connect:
            result += x

        return result


class MobileNetV3(nn.Module):
    def __init__(self,
                 inverted_residual_setting: List[InvertedResidualConfig],
                 last_channel: int,
                 num_classes: int = 1000,
                 block: Optional[Callable[..., nn.Module]] = None,
                 norm_layer: Optional[Callable[..., nn.Module]] = None):
        super(MobileNetV3, self).__init__()

        if not inverted_residual_setting:
            raise ValueError("The inverted_residual_setting should not be empty.")
        elif not (isinstance(inverted_residual_setting, List) and
                  all([isinstance(s, InvertedResidualConfig) for s in inverted_residual_setting])):
            raise TypeError("The inverted_residual_setting should be List[InvertedResidualConfig]")

        if block is None:
            block = InvertedResidual

        if norm_layer is None:
            norm_layer = partial(nn.BatchNorm2d, eps=0.001, momentum=0.01)

        layers: List[nn.Module] = []

        # building first layer
        firstconv_output_c = inverted_residual_setting[0].input_c
        layers.append(ConvBNActivation(3,
                                       firstconv_output_c,
                                       kernel_size=3,
                                       stride=2,
                                       norm_layer=norm_layer,
                                       activation_layer=nn.Hardswish))
        # building inverted residual blocks
        for cnf in inverted_residual_setting:
            layers.append(block(cnf, norm_layer))

        # building last several layers
        lastconv_input_c = inverted_residual_setting[-1].out_c
        lastconv_output_c = 6 * lastconv_input_c
        layers.append(ConvBNActivation(lastconv_input_c,
                                       lastconv_output_c,
                                       kernel_size=1,
                                       norm_layer=norm_layer,
                                       activation_layer=nn.Hardswish))
        self.features = nn.Sequential(*layers)
        self.avgpool = nn.AdaptiveAvgPool2d(1)
        self.classifier = nn.Sequential(nn.Linear(lastconv_output_c, last_channel),
                                        nn.Hardswish(inplace=True),
                                        nn.Dropout(p=0.2, inplace=True),
                                        nn.Linear(last_channel, num_classes))

        # initial weights
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode="fan_out")
                if m.bias is not None:
                    nn.init.zeros_(m.bias)
            elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
                nn.init.ones_(m.weight)
                nn.init.zeros_(m.bias)
            elif isinstance(m, nn.Linear):
                nn.init.normal_(m.weight, 0, 0.01)
                nn.init.zeros_(m.bias)

    def _forward_impl(self, x: Tensor) -> Tensor:
        x = self.features(x)
        x = self.avgpool(x)
        x = torch.flatten(x, 1)
        x = self.classifier(x)

        return x

    def forward(self, x: Tensor) -> Tensor:
        return self._forward_impl(x)


def mobilenet_v3_large(num_classes: int = 1000,
                       reduced_tail: bool = False,
                       dilated: bool = False) -> MobileNetV3:
    """
    Constructs a large MobileNetV3 architecture from
    "Searching for MobileNetV3" <https://arxiv.org/abs/1905.02244>.

    weights_link:
    https://download.pytorch.org/models/mobilenet_v3_large-8738ca79.pth

    Args:
        num_classes (int): number of classes
        reduced_tail (bool): If True, reduces the channel counts of all feature layers
            between C4 and C5 by 2. It is used to reduce the channel redundancy in the
            backbone for Detection and Segmentation.
        dilated: whether using dilated conv
    """
    width_multi = 1.0
    bneck_conf = partial(InvertedResidualConfig, width_multi=width_multi)
    adjust_channels = partial(InvertedResidualConfig.adjust_channels, width_multi=width_multi)

    reduce_divider = 2 if reduced_tail else 1
    dilation = 2 if dilated else 1

    inverted_residual_setting = [
        # input_c, kernel, expanded_c, out_c, use_se, activation, stride, dilation
        bneck_conf(16, 3, 16, 16, False, "RE", 1, 1),
        bneck_conf(16, 3, 64, 24, False, "RE", 2, 1),  # C1
        bneck_conf(24, 3, 72, 24, False, "RE", 1, 1),
        bneck_conf(24, 5, 72, 40, True, "RE", 2, 1),  # C2
        bneck_conf(40, 5, 120, 40, True, "RE", 1, 1),
        bneck_conf(40, 5, 120, 40, True, "RE", 1, 1),
        bneck_conf(40, 3, 240, 80, False, "HS", 2, 1),  # C3
        bneck_conf(80, 3, 200, 80, False, "HS", 1, 1),
        bneck_conf(80, 3, 184, 80, False, "HS", 1, 1),
        bneck_conf(80, 3, 184, 80, False, "HS", 1, 1),
        bneck_conf(80, 3, 480, 112, True, "HS", 1, 1),
        bneck_conf(112, 3, 672, 112, True, "HS", 1, 1),
        bneck_conf(112, 5, 672, 160 // reduce_divider, True, "HS", 2, dilation),  # C4
        bneck_conf(160 // reduce_divider, 5, 960 // reduce_divider, 160 // reduce_divider, True, "HS", 1, dilation),
        bneck_conf(160 // reduce_divider, 5, 960 // reduce_divider, 160 // reduce_divider, True, "HS", 1, dilation),
    ]
    last_channel = adjust_channels(1280 // reduce_divider)  # C5

    return MobileNetV3(inverted_residual_setting=inverted_residual_setting,
                       last_channel=last_channel,
                       num_classes=num_classes)


def mobilenet_v3_small(num_classes: int = 1000,
                       reduced_tail: bool = False,
                       dilated: bool = False) -> MobileNetV3:
    """
    Constructs a large MobileNetV3 architecture from
    "Searching for MobileNetV3" <https://arxiv.org/abs/1905.02244>.

    weights_link:
    https://download.pytorch.org/models/mobilenet_v3_small-047dcff4.pth

    Args:
        num_classes (int): number of classes
        reduced_tail (bool): If True, reduces the channel counts of all feature layers
            between C4 and C5 by 2. It is used to reduce the channel redundancy in the
            backbone for Detection and Segmentation.
        dilated: whether using dilated conv
    """
    width_multi = 1.0
    bneck_conf = partial(InvertedResidualConfig, width_multi=width_multi)
    adjust_channels = partial(InvertedResidualConfig.adjust_channels, width_multi=width_multi)

    reduce_divider = 2 if reduced_tail else 1
    dilation = 2 if dilated else 1

    inverted_residual_setting = [
        # input_c, kernel, expanded_c, out_c, use_se, activation, stride, dilation
        bneck_conf(16, 3, 16, 16, True, "RE", 2, 1),  # C1
        bneck_conf(16, 3, 72, 24, False, "RE", 2, 1),  # C2
        bneck_conf(24, 3, 88, 24, False, "RE", 1, 1),
        bneck_conf(24, 5, 96, 40, True, "HS", 2, 1),  # C3
        bneck_conf(40, 5, 240, 40, True, "HS", 1, 1),
        bneck_conf(40, 5, 240, 40, True, "HS", 1, 1),
        bneck_conf(40, 5, 120, 48, True, "HS", 1, 1),
        bneck_conf(48, 5, 144, 48, True, "HS", 1, 1),
        bneck_conf(48, 5, 288, 96 // reduce_divider, True, "HS", 2, dilation),  # C4
        bneck_conf(96 // reduce_divider, 5, 576 // reduce_divider, 96 // reduce_divider, True, "HS", 1, dilation),
        bneck_conf(96 // reduce_divider, 5, 576 // reduce_divider, 96 // reduce_divider, True, "HS", 1, dilation)
    ]
    last_channel = adjust_channels(1024 // reduce_divider)  # C5

    return MobileNetV3(inverted_residual_setting=inverted_residual_setting,
                       last_channel=last_channel,
                       num_classes=num_classes)

LR-ASPP

from collections import OrderedDict

from typing import Dict

import torch
from torch import nn, Tensor
from torch.nn import functional as F
from .mobilenet_backbone import mobilenet_v3_large


class IntermediateLayerGetter(nn.ModuleDict):
    """
    Module wrapper that returns intermediate layers from a model

    It has a strong assumption that the modules have been registered
    into the model in the same order as they are used.
    This means that one should **not** reuse the same nn.Module
    twice in the forward if you want this to work.

    Additionally, it is only able to query submodules that are directly
    assigned to the model. So if `model` is passed, `model.feature1` can
    be returned, but not `model.feature1.layer2`.

    Args:
        model (nn.Module): model on which we will extract the features
        return_layers (Dict[name, new_name]): a dict containing the names
            of the modules for which the activations will be returned as
            the key of the dict, and the value of the dict is the name
            of the returned activation (which the user can specify).
    """
    _version = 2
    __annotations__ = {
        "return_layers": Dict[str, str],
    }

    def __init__(self, model: nn.Module, return_layers: Dict[str, str]) -> None:
        if not set(return_layers).issubset([name for name, _ in model.named_children()]):
            raise ValueError("return_layers are not present in model")
        orig_return_layers = return_layers
        return_layers = {str(k): str(v) for k, v in return_layers.items()}

        # 重新构建backbone,将没有使用到的模块全部删掉
        layers = OrderedDict()
        for name, module in model.named_children():
            layers[name] = module
            if name in return_layers:
                del return_layers[name]
            if not return_layers:
                break

        super(IntermediateLayerGetter, self).__init__(layers)
        self.return_layers = orig_return_layers

    def forward(self, x: Tensor) -> Dict[str, Tensor]:
        out = OrderedDict()
        for name, module in self.items():
            x = module(x)
            if name in self.return_layers:
                out_name = self.return_layers[name]
                out[out_name] = x
        return out


class LRASPP(nn.Module):
    """
    Implements a Lite R-ASPP Network for semantic segmentation from
    `"Searching for MobileNetV3"
    <https://arxiv.org/abs/1905.02244>`_.

    Args:
        backbone (nn.Module): the network used to compute the features for the model.
            The backbone should return an OrderedDict[Tensor], with the key being
            "high" for the high level feature map and "low" for the low level feature map.
        low_channels (int): the number of channels of the low level features.
        high_channels (int): the number of channels of the high level features.
        num_classes (int): number of output classes of the model (including the background).
        inter_channels (int, optional): the number of channels for intermediate computations.
    """
    __constants__ = ['aux_classifier']

    def __init__(self,
                 backbone: nn.Module,
                 low_channels: int,
                 high_channels: int,
                 num_classes: int,
                 inter_channels: int = 128) -> None:
        super(LRASPP, self).__init__()
        self.backbone = backbone
        self.classifier = LRASPPHead(low_channels, high_channels, num_classes, inter_channels)

    def forward(self, x: Tensor) -> Dict[str, Tensor]:
        input_shape = x.shape[-2:]
        features = self.backbone(x)
        out = self.classifier(features)
        out = F.interpolate(out, size=input_shape, mode="bilinear", align_corners=False)

        result = OrderedDict()
        result["out"] = out

        return result


class LRASPPHead(nn.Module):
    def __init__(self,
                 low_channels: int,
                 high_channels: int,
                 num_classes: int,
                 inter_channels: int) -> None:
        super(LRASPPHead, self).__init__()
        self.cbr = nn.Sequential(
            nn.Conv2d(high_channels, inter_channels, 1, bias=False),
            nn.BatchNorm2d(inter_channels),
            nn.ReLU(inplace=True)
        )
        self.scale = nn.Sequential(
            nn.AdaptiveAvgPool2d(1),
            nn.Conv2d(high_channels, inter_channels, 1, bias=False),
            nn.Sigmoid()
        )
        self.low_classifier = nn.Conv2d(low_channels, num_classes, 1)
        self.high_classifier = nn.Conv2d(inter_channels, num_classes, 1)

    def forward(self, inputs: Dict[str, Tensor]) -> Tensor:
        low = inputs["low"]
        high = inputs["high"]

        x = self.cbr(high)
        s = self.scale(high)
        x = x * s
        x = F.interpolate(x, size=low.shape[-2:], mode="bilinear", align_corners=False)

        return self.low_classifier(low) + self.high_classifier(x)


def lraspp_mobilenetv3_large(num_classes=21, pretrain_backbone=False):
    # 'mobilenetv3_large_imagenet': 'https://download.pytorch.org/models/mobilenet_v3_large-8738ca79.pth'
    # 'lraspp_mobilenet_v3_large_coco': 'https://download.pytorch.org/models/lraspp_mobilenet_v3_large-d234d4ea.pth'
    backbone = mobilenet_v3_large(dilated=True)

    if pretrain_backbone:
        # 载入mobilenetv3 large backbone预训练权重
        backbone.load_state_dict(torch.load("mobilenet_v3_large.pth", map_location='cpu'))

    backbone = backbone.features

    # Gather the indices of blocks which are strided. These are the locations of C1, ..., Cn-1 blocks.
    # The first and last blocks are always included because they are the C0 (conv1) and Cn.
    stage_indices = [0] + [i for i, b in enumerate(backbone) if getattr(b, "is_strided", False)] + [len(backbone) - 1]
    low_pos = stage_indices[-4]  # use C2 here which has output_stride = 8
    high_pos = stage_indices[-1]  # use C5 which has output_stride = 16
    low_channels = backbone[low_pos].out_channels
    high_channels = backbone[high_pos].out_channels

    return_layers = {str(low_pos): "low", str(high_pos): "high"}
    backbone = IntermediateLayerGetter(backbone, return_layers=return_layers)

    model = LRASPP(backbone, low_channels, high_channels, num_classes)
    return model

参考:

[语义分割] LR-ASPP(MobileNet v3、轻量化、16倍下采样、膨胀卷积、ASPP、SE)

LR-ASPP论文

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/222897.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

如何做好软文推广的选题?媒介盒子分享常见套路

选题是软文推广的重中之重&#xff0c;主题选得好&#xff0c;不仅能够戳到用户&#xff0c;提高转化率&#xff0c;还能让各位运营的写作效率大幅度提升&#xff0c;今天媒介盒子就来和大家分享软文选题的常见套路&#xff0c;助力各位品牌进行选题。 一、 根据产品选题 软文…

安卓开发APP应用程序和苹果iOS开发APP应用程序有什么区别?

随着智能手机和平板电脑在全球的普及&#xff0c;APP移动应用已成为日常生活中不可或缺的组成部分。从社交网络到电子商务平台&#xff0c;从个人理财到游戏娱乐&#xff0c;APP几乎渗透了人们所有的活动领域。在开发APP时&#xff0c;开发者通常要面对两大主流平台&#xff1a…

鸿蒙4.0开发笔记之ArkTS语法基础的UI描述、基础组件的使用与如何查看组件是否有参数(八)

文章目录 一、声明式UI描述1、无/有参数组件2、如何查看组件是否有参数 二、Image组件的使用三、组件的属性设置四、补充1、使用组件的成员函数配置组件的事件方法2、配置子组件3、多组件嵌套 一、声明式UI描述 在HarmonyOS的ArkTS语法中&#xff0c;万物皆组件。ArkTS以声明方…

Spring-Boot---配置文件

文章目录 配置文件的作用配置文件的格式PropertiesProperties基本语法读取Properties配置文件 ymlyml基本语法读取yml配置文件 Properties VS Yml 配置文件的作用 整个项目中所有重要的数据都是在配置文件中配置的&#xff0c;具有非常重要的作用。比如&#xff1a; 数据库的…

【TiDB理论知识09】TiFlash

一 TiFlash架构 二 TiFlash 核心特性 TiFlash 主要有 异步复制、一致性、智能选择、计算加速 等几个核心特性。 1 异步复制 TiFlash 中的副本以特殊角色 (Raft Learner) 进行异步的数据复制&#xff0c;这表示当 TiFlash 节点宕机或者网络高延迟等状况发生时&#xff0c;Ti…

SCAU:18049 迭代法求平方根

18049 迭代法求平方根 时间限制:1000MS 代码长度限制:10KB 提交次数:0 通过次数:0 题型: 填空题 语言: G;GCC;VC Description 使用迭代法求a的平方根。求平方根的迭代公式如下&#xff0c;要求计算到相邻两次求出的x的差的绝对值小于1E-5时停止&#xff0c;结果显示4位小…

神经网络模型流程与卷积神经网络实现

神经网络模型流程 神经网络模型的搭建流程&#xff0c;整理下自己的思路&#xff0c;这个过程不会细分出来&#xff0c;而是主流程。 在这里我主要是把整个流程分为两个主流程&#xff0c;即预训练与推理。预训练过程主要是生成超参数文件与搭设神经网络结构&#xff1b;而推理…

Redis集群:Sentinel哨兵模式(图文详解)

在 Redis 主从复制模式中&#xff0c;因为系统不具备自动恢复的功能&#xff0c;所以当主服务器&#xff08;master&#xff09;宕机后&#xff0c;需要手动把一台从服务器&#xff08;slave&#xff09;切换为主服务器。在这个过程中&#xff0c;不仅需要人为干预&#xff0c;…

vue3项目中前端导出word文档和导出excel文档

一、导出word文档 参考文章https://blog.csdn.net/qq_53722480/article/details/130017092 1、使用到的包如下&#xff1a; "docxtemplater": "^3.42.4", "file-saver": "^2.0.5", "jszip-utils": "^0.1.0", &q…

【分享】PDF文件不能编辑的3个原因

PDF文件具有很好的兼容性&#xff0c;可靠性&#xff0c;安全性&#xff0c;是很多人办公常用的电子文档格式。但有时候想要编辑PDF时&#xff0c;却发现不能编辑&#xff0c;是什么原因呢&#xff1f;下面小编来分享一下常见的3个原因。 原因1&#xff1a; PDF文件是扫描件&a…

6G网络将于2030年推出?它与5G相比都有哪些提升?

在这之前&#xff0c;我们曾为大家报道了苹果放弃5G调整解调器的研究工作「有消息称苹果将放弃 5G 调制解调器的研究&#xff0c;你了解调制解调器吗&#xff1f;」&#xff0c;如今又有报道称由于5G调整解调器开发遇到困难&#xff0c;苹果将加大对于6G蜂窝连接的开发。你知道…

第四届传智杯初赛(莲子的机械动力学)

题目描述 题目背景的问题可以转化为如下描述&#xff1a; 给定两个长度分别为 n,m 的整数 a,b&#xff0c;计算它们的和。 但是要注意的是&#xff0c;这里的 a,b 采用了某种特殊的进制表示法。最终的结果也会采用该种表示法。具体而言&#xff0c;从低位往高位数起&#xf…

GEE:构建和调用自己的 js 函数库

作者&#xff1a;CSDN _养乐多_ 本文记录了在Google Earth Engine&#xff08;GEE&#xff09;上构建自己的 js 函数库的步骤。构建自己的函数库以方便代码调用和扩展。 文章目录 一、创建lib文件二、调用lib库三、附加3.1 定义函数3.2 js 库中函数互相调用 一、创建lib文件 …

什么?你还不会 OpenTiny 跨框架组件库适配微前端?

本文由体验技术团队 TinyVue 组件库成员陈家梅同学分享&#xff0c;带你手把手实现 TinyVue 组件库适配微前端~ 一、前言 以下是我对微前端的一些粗浅理解&#xff0c;对微前端有一定了解的话可以略过&#xff0c;直接进入第二部分。 1、微前端是什么&#xff1f; 我们首先…

Vue项目使用Sortable.js实现拖拽功能

想了解更多-可前往 Sortable.js官网 查看组件属性及参数 安装组件&#xff08;我这里使用的是NPM安装&#xff09; npm install sortablejs --save在需要使用拖拽功能的页面中使用&#xff08;完整功能代码&#xff09; <div class"tag_box"><div class&q…

【电子取证篇】汽车取证数据提取与汽车取证实例浅析(附标准下载)

【电子取证篇】汽车取证数据提取与汽车取证实例浅析&#xff08;附标准下载&#xff09; 关键词&#xff1a;汽车取证&#xff0c;车速鉴定、声像资料鉴定、汽车EDR提取分析 汽车EDR一般记录车辆碰撞前后的数秒&#xff08;5s左右&#xff09;相关数据&#xff0c;包括车辆速…

优化 uniapp 发行操作:一键打包、混淆代码

​ uniapp一键发行代码并混淆代码 第一步.在项目根目录下安装插件 npm install javascript-obfuscator -g安装完成后&#xff0c;javascript-obfuscator就是一个独立的可执行命令了。 javascript-obfuscator -v第二步&#xff1a;HbuilderX点击发行按钮&#xff0c;打包代码…

robotFramwork 中如何禁用或跳过其中某个 testcase

在 Robot Framework 中&#xff0c;你可以通过添加一个特殊的标签&#xff08;tag&#xff09;来禁用某个测试用例。这个标签是 robot:skip。 robotframework *** Settings *** Test Setup Open Application*** Test Cases *** My Test Case[Tags] robot:skipDo Some…

判断是否存在重复的数

系列文章目录 进阶的卡莎C_睡觉觉觉得的博客-CSDN博客数1的个数_睡觉觉觉得的博客-CSDN博客双精度浮点数的输入输出_睡觉觉觉得的博客-CSDN博客足球联赛积分_睡觉觉觉得的博客-CSDN博客大减价(一级)_睡觉觉觉得的博客-CSDN博客小写字母的判断_睡觉觉觉得的博客-CSDN博客纸币(C…

我一人全干!之二,vue3后台管理系统树形目录的实现。

一个完整的后台管理系统需要一个树形结构的目录&#xff0c;方便用户切换页面。 因为使用的是element-plus的ui库&#xff0c;所以首选el-menu组件&#xff0c;点击查看文档。 因为此组件不是树形结构的&#xff0c;所以需要封装成系统需要的树形结构组件。可以使用vue的递归组…