netty07-粘包半包以及解决方案

粘包指的是发送方在发送数据时,多个数据包被合并成一个大的数据包发送到接收方,接收方在接收时无法准确地区分各个数据包的边界,从而导致数据粘在一起。

半包指的是发送方发送的数据包被拆分成了多个小的数据包,在接收方接收时,无法完整地接收到一个数据包,导致数据包的边界不完整,出现了"半个"数据包。

现象分析

粘包
  • 现象
    • 发送 abc def,接收 abcdef
  • 原因
    • 应用层
      • 接收方 ByteBuf 设置太大(Netty 默认 1024)
    • 传输层-网络层
      • 滑动窗口:假设发送方 256 bytes 表示一个完整报文,但由于接收方处理不及时且**窗口大小足够大(大于256 bytes),这 256 bytes 字节就会缓冲在接收方的滑动窗口中,**当滑动窗口中缓冲了多个报文就会粘包
      • Nagle 算法:会造成粘包
半包
  • 现象
    • 发送 abcdef,接收 abc def
  • 原因
    • 应用层
      • 接收方 ByteBuf 小于实际发送数据量
    • 传输层-网络层
      • 滑动窗口:假设接收方的窗口只剩了 128 bytes,发送方的报文大小是 256 bytes,这时接收方窗口中无法容纳发送方的全部报文,发送方只能先发送前 128 bytes,等待 ack 后才能发送剩余部分,这就造成了半包
    • 数据链路层
      • MSS 限制:当发送的数据超过 MSS 限制后,会将数据切分发送,就会造成半包
本质

发生粘包与半包现象的本质是因为 TCP 是流式协议,消息无边界

具体原因

​ 由于TCP协议本身的机制(面向连接的可靠地协议-三次握手机制)客户端与服务器会维持一个连接(Channel),数据在连接不断开的情况下,可以持续不断地将多个数据包发往服务器,但是如果发送的网络数据包太小,那么他本身会启用Nagle算法(可配置是否启用)对较小的数据包进行合并(基于此,TCP的网络延迟要UDP的高些)然后再发送(超时或者包大小足够)。那么这样的话,服务器在接收到消息(数据流)的时候就无法区分哪些数据包是客户端自己分开发送的,这样产生了粘包;服务器在接收到数据库后,放到缓冲区中,如果消息没有被及时从缓存区取走,下次在取数据的时候可能就会出现一次取出多个数据包的情况,造成粘包现象。

而对于UDP,本身作为无连接的不可靠的传输协议(适合频繁发送较小的数据包),他不会对数据包进行合并发送(也就没有Nagle算法之说了),他直接是一端发送什么数据,直接就发出去了,既然他不会对数据合并,每一个数据包都是完整的(数据+UDP头+IP头等等发一次数据封装一次)也就没有粘包一说了。

半包产生的原因就简单的多:可能是IP分片传输导致的,也可能是传输过程中丢失部分包导致出现的半包,还有可能就是一个包可能被分成了两次传输,在取数据的时候,先取到了一部分(还可能与接收的缓冲区大小有关系),总之就是一个数据包被分成了多次接收。

发生TCP粘包或拆包有很多原因,但是常见原因无非就是:

1、要发送的数据大于TCP发送缓冲区剩余空间大小,将会发生拆包。

2、待发送数据大于MSS(最大报文长度),TCP在传输前将进行拆包。

3、要发送的数据小于TCP发送缓冲区的大小,TCP将多次写入缓冲区的数据一次发送出去,将会发生粘包。

4、接收数据端的应用层没有及时读取接收缓冲区中的数据,将发生粘包。

粘包与半包的解决方法

1 短链接

客户端每次向服务器发送数据以后,就与服务器断开连接,此时的消息边界为连接建立到连接断开。这时便无需使用滑动窗口等技术来缓冲数据,则不会发生粘包现象。但如果一次性数据发送过多,接收方无法一次性容纳所有数据,还是会发生半包现象,所以短链接无法解决半包现象(UDP)

2 使用分隔符

在数据包中添加边界:在数据包中添加特殊的边界符号,如换行符或者其他特殊字符,接收方根据边界符号来切分数据包

行解码器

行解码器的是通过分隔符对数据进行拆分来解决粘包半包问题的

可以通过LineBasedFrameDecoder(int maxLength)来拆分以换行符(\n)为分隔符的数据,也可以通过DelimiterBasedFrameDecoder(int maxFrameLength, ByteBuf... delimiters)指定通过什么分隔符来拆分数据(可以传入多个分隔符)

两种解码器都需要传入数据的最大长度,若超出最大长度,会抛出TooLongFrameException异常

3 定长解码器

客户端于服务器约定一个最大长度,保证客户端每次发送的数据长度都不会大于该长度。若发送数据长度不足则需要补齐至该长度

服务器接收数据时,将接收到的数据按照约定的最大长度进行拆分,即使发送过程中产生了粘包,也可以通过定长解码器将数据正确地进行拆分。服务端需要用到FixedLengthFrameDecoder对数据进行定长解码,具体使用方法如下

ch.pipeline().addLast(new FixedLengthFrameDecoder(16));

客户端代码

客户端发送数据的代码如下

// 约定最大长度为16
final int maxLength = 16;
// 被发送的数据
char c = 'a';
// 向服务器发送10个报文
for (int i = 0; i < 10; i++) {
    ByteBuf buffer = ctx.alloc().buffer(maxLength);
    // 定长byte数组,未使用部分会以0进行填充
    byte[] bytes = new byte[maxLength];
    // 生成长度为0~15的数据
    for (int j = 0; j < (int)(Math.random()*(maxLength-1)); j++) {
        bytes[j] = (byte) c;
    }
    buffer.writeBytes(bytes);
    c++;
    // 将数据发送给服务器
    ctx.writeAndFlush(buffer);
}Copy

服务器代码

使用FixedLengthFrameDecoder对粘包数据进行拆分

// 通过定长解码器对粘包数据进行拆分
ch.pipeline().addLast(new FixedLengthFrameDecoder(16));

长度字段解码器

在传送数据时可以在数据中添加一个用于表示有用数据长度的字段,在解码时读取出这个用于表明长度的字段,同时读取其他相关参数,即可知道最终需要的数据是什么样子的

LengthFieldBasedFrameDecoder解码器可以提供更为丰富的拆分方法,其构造方法有五个参数

public LengthFieldBasedFrameDecoder(
    int maxFrameLength,
    int lengthFieldOffset, int lengthFieldLength,
    int lengthAdjustment, int initialBytesToStrip)Copy

参数解析

  • maxFrameLength 数据最大长度
    • 表示数据的最大长度(包括附加信息、长度标识等内容)
  • lengthFieldOffset 数据长度标识的起始偏移量
    • 用于指明数据第几个字节开始是用于标识有用字节长度的,因为前面可能还有其他附加信息
  • lengthFieldLength 数据长度标识所占字节数(用于指明有用数据的长度)
    • 数据中用于表示有用数据长度的标识所占的字节数
  • lengthAdjustment 长度表示与有用数据的偏移量
    • 用于指明数据长度标识和有用数据之间的距离,因为两者之间还可能有附加信息
  • initialBytesToStrip 数据读取起点
    • 读取起点,不读取 0 ~ initialBytesToStrip 之间的数据

参数图解

img

lengthFieldOffset   = 0
lengthFieldLength   = 2
lengthAdjustment    = 0
initialBytesToStrip = 0 (= do not strip header)
  
BEFORE DECODE (14 bytes)         AFTER DECODE (14 bytes)
+--------+----------------+      +--------+----------------+
| Length | Actual Content |----->| Length | Actual Content |
| 0x000C | "HELLO, WORLD" |      | 0x000C | "HELLO, WORLD" |
+--------+----------------+      +--------+----------------+Copy

从0开始即为长度标识,长度标识长度为2个字节

0x000C 即为后面 HELLO, WORLD的长度


lengthFieldOffset   = 0
lengthFieldLength   = 2
lengthAdjustment    = 0
initialBytesToStrip = 2 (= the length of the Length field)
  
BEFORE DECODE (14 bytes)         AFTER DECODE (12 bytes)
+--------+----------------+      +----------------+
| Length | Actual Content |----->| Actual Content |
| 0x000C | "HELLO, WORLD" |      | "HELLO, WORLD" |
+--------+----------------+      +----------------+Copy

从0开始即为长度标识,长度标识长度为2个字节,读取时从第二个字节开始读取(此处即跳过长度标识)

因为跳过了用于表示长度的2个字节,所以此处直接读取HELLO, WORLD


lengthFieldOffset   = 2 (= the length of Header 1)
lengthFieldLength   = 3
lengthAdjustment    = 0
initialBytesToStrip = 0
  
BEFORE DECODE (17 bytes)                      AFTER DECODE (17 bytes)
+----------+----------+----------------+      +----------+----------+----------------+
| Header 1 |  Length  | Actual Content |----->| Header 1 |  Length  | Actual Content |
|  0xCAFE  | 0x00000C | "HELLO, WORLD" |      |  0xCAFE  | 0x00000C | "HELLO, WORLD" |
+----------+----------+----------------+      +----------+----------+----------------+Copy

长度标识前面还有2个字节的其他内容(0xCAFE),第三个字节开始才是长度标识,长度表示长度为3个字节(0x00000C)

Header1中有附加信息,读取长度标识时需要跳过这些附加信息来获取长度


lengthFieldOffset   = 0
lengthFieldLength   = 3
lengthAdjustment    = 2 (= the length of Header 1)
initialBytesToStrip = 0
  
BEFORE DECODE (17 bytes)                      AFTER DECODE (17 bytes)
+----------+----------+----------------+      +----------+----------+----------------+
|  Length  | Header 1 | Actual Content |----->|  Length  | Header 1 | Actual Content |
| 0x00000C |  0xCAFE  | "HELLO, WORLD" |      | 0x00000C |  0xCAFE  | "HELLO, WORLD" |
+----------+----------+----------------+      +----------+----------+----------------+Copy

从0开始即为长度标识,长度标识长度为3个字节,长度标识之后还有2个字节的其他内容(0xCAFE)

长度标识(0x00000C)表示的是从其后lengthAdjustment(2个字节)开始的数据的长度,即HELLO, WORLD,不包括0xCAFE


lengthFieldOffset   = 1 (= the length of HDR1)
lengthFieldLength   = 2
lengthAdjustment    = 1 (= the length of HDR2)
initialBytesToStrip = 3 (= the length of HDR1 + LEN)
  
BEFORE DECODE (16 bytes)                       AFTER DECODE (13 bytes)
+------+--------+------+----------------+      +------+----------------+
| HDR1 | Length | HDR2 | Actual Content |----->| HDR2 | Actual Content |
| 0xCA | 0x000C | 0xFE | "HELLO, WORLD" |      | 0xFE | "HELLO, WORLD" |
+------+--------+------+----------------+      +------+----------------+Copy

长度标识前面有1个字节的其他内容,后面也有1个字节的其他内容,读取时从长度标识之后3个字节处开始读取,即读取 0xFE HELLO, WORLD

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/222839.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

C# Onnx 阿里达摩院开源DAMO-YOLO目标检测

效果 模型信息 Inputs ------------------------- name&#xff1a;images tensor&#xff1a;Float[1, 3, 192, 320] --------------------------------------------------------------- Outputs ------------------------- name&#xff1a;output tensor&#xff1a;Float…

批发订货系统一般有哪几种形式

批发订货系统一般有三种方式&#xff1a; 第一种是SaaS&#xff0c;这种方式软件厂商开一个账号&#xff0c;使用的企业仅使用里面的一个账号&#xff0c;给客户进行订货&#xff0c;有的甚至没有独立的小程序&#xff0c;需要进入软件厂商的APP进行订货&#xff0c;这种方法的…

从钓鱼邮件溯源到反制上线

背景 某天下午紧急接到一个溯源的活儿&#xff1a;客户收到一封可疑邮件&#xff0c;要求判断是否为钓鱼邮件&#xff0c;如果是钓鱼邮件&#xff0c;则要求尽可能找到人员信息。由于保密要求&#xff0c;所以部分信息必须厚码&#xff0c;请各位师傅见谅。 邮件内容如下&…

识别和修复网站上损坏链接的最佳实践

如果您有一个网站&#xff0c;我们知道您花了很多时间在它上面&#xff0c;以使其成为最好的资源。如果你的链接不起作用&#xff0c;你的努力可能是徒劳的。您网站上的断开链接可能会以两种方式损害您的业务&#xff1a; 它们对企业来说是可怕的&#xff0c;因为当消费者点击…

​DeepMind:开发出可以向人类学习的人工智能

Nature发表了一篇Google DeepMind的研究成果&#xff1a;研究人员在3D模拟环境中使用神经网络和强化学习&#xff0c;展示了AI智能体如何在没有直接从人类那里获取数据的情况下&#xff0c;通过观察来学习和模仿人类的行为。 这项研究被视为向人工通用智能&#xff08;AGI&…

Google难架马甲多

今年谷歌上架的难度可谓是地狱级别。 可是国内马甲这么多&#xff0c;总要摸索出一些套路来。 这里总结几条开源aab混淆策略。 1、as自带混淆是必要的&#xff0c;否则就是源码提包&#xff0c;相当于到谷歌门口举个牌子说我是马甲包。 不仅要驳回&#xff0c;还要被封号。…

【Trino权威指南(第二版)】Trino介绍:trino解决大数带来的问题

文章目录 一. 大数据带来的问题二. Trino来救场1. 为性能和规模而生2. SQL-on-Anything3. 数据存储与查询计算资源分离 三. Trino使用场景 一. 大数据带来的问题 数据现状 数据存储机制日益多样&#xff1a;关系型数据库、NoSQL数据库、文档数据库、键值存储和对象存储系统等。…

Python中的并发编程(1)并发相关概念

并发和并行 并发和并行 并发指逻辑上同时处理多件事情&#xff0c;并行指实际上同时做多件事情。 并发不一定通过并行实现&#xff0c;也可以通过多任务实现。例如&#xff1a;现代操作系统都可以同时执行多个任务&#xff0c;比如同时听歌和玩游戏&#xff0c;但歌曲播放和游…

每日一练【查找总价格为目标值的两个商品】

一、题目描述 题目链接 购物车内的商品价格按照升序记录于数组 price。请在购物车中找到两个商品的价格总和刚好是 target。若存在多种情况&#xff0c;返回任一结果即可。 示例 1&#xff1a; 输入&#xff1a;price [3, 9, 12, 15], target 18 输出&#xff1a;[3,15] …

【MVP矩阵】投影矩阵推导与实现

相机空间和NDC空间示意图&#xff08;来自奇乐编程学院&#xff09; 相机坐标系一般都是右手坐标系, 相机朝向是 z 的负半轴 裁剪空间和NDC空间示意图 投影矩阵推导 【本文仅用于自身备忘】 正交投影推导结果如下 透视投影推导结果如下 备注 一般情况下&#xff0c;透…

Java数据结构之《希尔排序》(难度系数85)

一、前言&#xff1a; 这是怀化学院的&#xff1a;Java数据结构中的一道难度中等的一道编程题(此方法为博主自己研究&#xff0c;问题基本解决&#xff0c;若有bug欢迎下方评论提出意见&#xff0c;我会第一时间改进代码&#xff0c;谢谢&#xff01;) 后面其他编程题只要我写完…

【国金属学会指导】第十一届先进制造技术与材料工程国际学术会议 (AMTME 2024)

JPCS独立出版/高录用快检索/院士杰青云集 第十一届先进制造技术与材料工程国际学术会议 (AMTME 2024) 2024 11th International Conference on Advanced Manufacturing Technology and Materials Engineering 第十一届先进制造技术与材料工程国际学术会议 (AMTME 2024) 定…

高质量科技期刊分级目录汇总(附下载)

中国科协自 2019 年以来&#xff0c;分批支持全国学会面向学科领域国内外科技期刊&#xff0c;编制发布高质量期刊分级目录&#xff0c;为科技工作者发表论文和科研机构开展学术评价提供参考。截至 2023 年 11 月底&#xff0c;已有 43 家全国学会完成了所在领域首版分级目录编…

用java比较两个二叉搜索树是否等价

一. 定义树的的节点 ​ 不同二叉树的叶节点上可以保存相同的值序列。例如&#xff0c;以下两个二叉树都保存了序列 1&#xff0c;1&#xff0c;2&#xff0c;3&#xff0c;5&#xff0c;8&#xff0c;13。 package com.wedoo.coderyeah.module.iot.algorithm;import lombok.…

车联网架构设计(二)_消息缓存

在上一篇博客车联网架构设计(一)_消息平台的搭建-CSDN博客中&#xff0c;我介绍了车联网平台需要实现的一些功能&#xff0c;并介绍了如何用EMQXHAPROXY来搭建一个MQTT消息平台。车联网平台的应用需要消费车辆发布的消息&#xff0c;同时也会下发消息给车辆&#xff0c;以实现车…

ModStartCMS v7.7.0 集成内容区块,文件选择顺序

ModStart 是一个基于 Laravel 模块化极速开发框架。模块市场拥有丰富的功能应用&#xff0c;支持后台一键快速安装&#xff0c;让开发者能快的实现业务功能开发。 系统完全开源&#xff0c;基于 Apache 2.0 开源协议&#xff0c;免费且不限制商业使用。 功能特性 丰富的模块市…

羊大师发现,广州可能真的要下雪了!

羊大师发现&#xff0c;广州可能真的要下雪了&#xff01; 关于这次广州可能要下雪的消息&#xff0c;来源于气象部门的初步预测。据气象部门表示&#xff0c;近期广州将受到较强的冷空气影响&#xff0c;降温幅度可达5-7摄氏度&#xff0c;且湿度较大&#xff0c;这都是下雪的…

动静态IP代理是怎么实现的?如何搭建稳定独享住宅IP?

首先&#xff0c;让我们来了解一下什么是动静态IP代理。动静态IP代理是一种网络代理服务&#xff0c;它可以通过设置IP代理服务器来隐藏用户的真实IP地址&#xff0c;从而保护用户的隐私和安全。 根据是否需要手动切换IP地址&#xff0c;可以将动静态IP代理分为动态代理和静态代…

C-11练习题

一、单项选择题(本大题共20小题,每小题2分,共40分。在每小题给出的四个备选项中选出一个正确的答案,并将所选项前的字母填写在答题纸的相应位置上。) 1,在C语言中,合法的长整型常数是(&#xff09; A. OxOL B. 4962710M C. 324562& D. 216D 2,设有定义: int a[10],*pa6,*q…

Git配置

个人主页&#xff1a;Lei宝啊 愿所有美好如期而遇 前言 前面我们新建了远程仓库并且在Linux上克隆了远程仓库&#xff0c;但是在新建仓库时我们提到会配置gitignore文件&#xff0c;这次我们将会配置他&#xff0c;并给命令起别名。 目录 前言 忽略特殊文件 给命令起别名…