线性回归既是一种数据挖掘与建模算法,也是统计学领域、计量经济学领域的常用学术建模方法,有何不同?

一.线性回归的基本形式

线性回归既是一种数据挖掘与建模算法,也是统计学领域、计量经济学领域的常用学术建模方法。在数据挖掘与建模领域,线性回归算法是一种较为基础的机器学习算法,其基本思想是将响应变量(因变量、被解释变量)和特征变量(自变量、解释变量、因子、协变量)描述成线性关系。

二.统计学领域、计量经济学领域的线性回归

统计学领域、计量经济学领域的线性回归主要关心的是估计的系数αβ,尤其是β,通过观察β的系数方向、大小以及是否具有统计学显著性,来验证参与分析的经济变量之间的关系,比如提升通货膨胀率是否有助于降低失业率等等。所以,对于β系数估计的有效性是比较高的。在构建线性回归方程、应用最小二乘法估计回归方程系数时,需要满足以下假设条件:

1) 假定特征之间无多重共线性。

2) 误差项之间相互独立,且均服从同一正态分布。

3) 误差项满足与特征之间的严格外生性假定。

4) 误差项满足自身的同方差假定。

5) 误差项满足自身的无自相关假定。

如果不满足这些假设条件,那么最小二乘法的适用性、估计系数的有效性就难以保证,从而学术研究的规范性也会受到质疑。

三.数据挖掘与建模领域的线性回归

而在数据挖掘与建模应用方面,模型致力于商业预测,比如研究客户的产品购买行为与年收入水平等变量之间的关系等,线性回归主要关心的是响应变量的实际值y与拟合值之间的差值是否足够小,特征变量的线性组合是否可以有效预测响应变量,因此,即使数据不满足那些假设条件,线性回归也可以积极使用,只要预测效果可以让人接受甚至令人非常满意,那么模型就可以被认为是适用的,可以用来进行预测。

响应变量的变化可以由α+βX组成的线性部分和随机误差项ε部分来解释。对于线性模型,一般采用最小二乘估计法来估计参数αβ,最小二乘估计法的基本原理是使残差平方和最小,残差就是响应变量的实际值y与拟合值之间的差值,其中响应变量的实际值y即为样本观测值的实际y值,而响应变量的拟合值即为基于样本观测值的实际X值以及估计出来的参数αβ。通过α+βX计算得到的、预测出来的值。

四.线性模型具有一定的稳定性

线性模型具有一定的稳定性。从技术角度来看,我们在评价模型的优劣时,通常从两个维度去评判,一是模型预测的准确性,二是模型预测的稳健性,两者相辅相成、缺一不可。关于模型预测的准确性,如果模型尽可能地拟合了历史数据信息,拟合优度很高,损失的信息量很小,而且对于未来的预测都很接近真实的发生值,那么这个模型一般被认为是质量较高的。而关于模型的稳健性,我们期望的是模型在对训练样本以外的样本进行预测时,模型的预测精度不应该有较大幅度的下降。一般来说,神经网络、决策树的预测准确性要优于线性回归、判别分析和Logistic回归分析等线性分析,但是其稳健性弱于线性分析。

五.统计分析、数据分析、挖掘方面有三个主流分支:统计学、计量经济学、机器学习

很多朋友问我,零基础如何入门统计分析、数据分析、数据挖掘?我想说的是:统计分析、数据分析、挖掘方面有三个主流分支:统计学、计量经济学、机器学习。这三个学科有所交叉,但也各自有侧重点。每个学校、每个专业具体情况不一样,但大多数都会选择其中一门或多门作为核心。根据我多年的教学经验,大家无论是学机器学习还是统计学、计量经济学,都建议结合着具体的软件或来学,对于不想走纯科研路线或者想成为理论大牛的大多数朋友来说,不建议过多研究数学公式,而是应一边学习知识原理,一遍上手操作,不然就会在复杂的推导面前耗尽了所有的学习热情。目前学习统计学实现工具最好用最流行的就是SPSS,学习计量经济学实现工具最好用最流行的就是Stata,而机器学习实现工具最好用最流行的就是Python,也比较好入手。所以,推荐学一门编程语言Python,加两个统计分析软件Stata、SPSS,这样几乎可以胜任统计分析与数据科学的各种场景,无论是在校搞学术还是职场搞数据都绰绰有余。

六.如何学习Python/SPSS/Stata?

在学习Python/SPSS/Stata时也不能光看视频,而是应该拿到具体的案例、源代码,一边学习一边操作,不断从学习中获得成就感,才会事半功倍,不然学了半天很容易学了就忘,那些代码估计也记不住,所以还是具体找些书好好的系统学习下。那么学习统计分析与数据科学应该看什么书?
1、《Python数据科学应用从入门到精通》张甜 杨维忠编著 清华大学出版社 2023年 适用于Python基础教学、数据分析、数据挖掘与建模、数据可视化、数据清洗等教学。国务院发展研究中心创新发展研究部第二研究室主任杨超 ,山东大学经济学院金融系党支部书记、副主任、副教授、硕士生导师张博,山东管理学院信息工程学院院长 袁锋 教授、硕士生导师,山东大学经济学院 刘一鸣 副研究员、硕士生导师,得厚投资合伙人 张伟民等一众大牛联袂推荐。

2、《Python机器学习原理与算法实现》杨维忠 张甜编著 清华大学出版社 2023年 适用于Python基础教学、数据分析、数据挖掘与建模、机器学习等教学。恒丰银行总行副行长郑现中,山东大学经济学院教学实验中心主任 副教授 韩振,德勤华永会计师事务所 华文伟 合伙人,首创证券深圳分公司机构业务部 樊磊 总经理 中国准精算师,山东省农村信用社联合社数据管理项目组 郝路安 总监等一众大牛联袂推荐。

3、《Stata统计分析从入门到精通》杨维忠 张甜编著 清华大学出版社 2022年 适用于Stata计量经济学、统计分析教学。国内计量大牛、山东大学陈强教授作序推荐,长期占据当当、京东、淘宝同类图书畅销榜前列。国内众多高校作为核心专业课程教材。

4、《Stata统计分析商用建模与综合案例精解》杨维忠 张甜编著 清华大学出版社 2021年 适用于Stata计量经济学、统计分析教学。国内众多高校作为核心专业课程教材。在51CTO举办的“2021年度最受读者喜爱的IT图书作者评选”中,《Stata统计分析商用建模与综合案例精解》荣获“数据科学领域最受读者喜爱的图书TOP5”。

5、《SPSS统计分析入门与应用精解(视频教学版)》杨维忠 张甜编著 清华大学出版社 2022年 适用于SPSS统计分析教学。同为国内计量大牛、山东大学陈强教授作序推荐,长期占据当当、京东、淘宝同类图书畅销榜前列。国内众多高校作为核心专业课程教材。

6、《SPSS统计分析商用建模与综合案例精解》杨维忠 张甜编著 清华大学出版社 2021年 适用于SPSS统计分析教学。国内众多高校作为核心专业课程教材。在51CTO举办的“2021年度最受读者喜爱的IT图书作者评选”中,《SPSS统计分析商用建模与综合案例精解》荣获“数据科学领域最受读者喜爱的图书TOP5”。

京东、当当、淘宝各大平台均在热销中,搜索书名即可。

创作不易,恳请大家多多点赞支持!也欢迎大家关注我,让我们一起学习Stata、SPSS、Python知识。多谢!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/220476.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

协议栈的内部结构

上层会向下层逐层委派工作。 最上面的部分是网络应用程序,它们会将收发数据等工作委派给下层的部分来完成。尽管不同的应用程序收发的数据内容不同,但收发数据的操作是共通的。 应用程序的下面是Socket库,其中包括解析器,解析器…

Java+Swing+Mysql实现超市管理系统

一、系统介绍 1.开发环境 操作系统:Win10 开发工具 :IDEA2018 JDK版本:jdk1.8 数据库:Mysql8.0 2.技术选型 JavaSwingMysql 3.功能模块 4.系统功能 1.系统登录登出 管理员可以登录、退出系统 2.商品信息管理 管理员可以对商品信息…

Windows下安装Git和Git小乌龟

目录 Git简介 Git安装 Git小乌龟简介 Git小乌龟安装 Git简介 Git是一个开源的分布式版本控制系统,可以有效、高速地进行从很小到非常大的项目的版本管理。Git支持将本地仓库与远程仓库进行关联,实现多人协作开发。由于具有分布式版本控制、高效性、灵…

掌握Python Pingouin:数据统计新利器解析!

更多资料获取 📚 个人网站:ipengtao.com Pingouin库基于pandas、scipy和statsmodels,为用户提供了执行常见统计分析的功能。它支持各种统计方法和假设检验,例如 t-tests、ANOVA、correlation analysis 等。让我们看一些示例代码&…

打表技巧—连续正数和

与其明天开始,不如现在行动! 文章目录 连续正数和1 题目描述2 解决思路3 代码实现 💎总结 连续正数和 1 题目描述 定义一种数:可以表示成若干 (数量>1) 连续正数和的数比如: 5 23,5就是这样的数 12345,12就是这样…

全球与中国胃肠道治疗市场:增长趋势、竞争格局与前景展望

胃肠道治疗学是指医学和医疗保健的一个领域,专注于影响胃肠道 (GI) 的疾病和病症的诊断、治疗和管理。胃肠道治疗包括药物治疗和手术干预,旨在解决各种胃肠道疾病,如食道(GERD)、发炎性肠道疾病疾病(IBD)、消化性溃疡和腹泻。它包括多种医学方…

详解十大经典排序算法(五):归并排序(Merge Sort)

算法原理 归并排序的核心思想是将一个大的数组分割成多个小的子数组,然后分别对这些子数组进行排序,最后将排序后的子数组合并起来,得到一个有序的大数组。 算法描述 归并排序(Merge Sort)是一种经典的排序算法&#x…

Azure Machine Learning - 在 Azure 门户中创建演示应用

目录 准备环境启动向导配置搜索结果添加自动提示功能添加建议创建、下载和执行清理资源 使用 Azure 门户的“创建演示应用”向导来生成可下载的“localhost”样式的 Web 应用,该应用在浏览器中运行。 根据其配置,生成的应用在首次使用时就能正常运行&…

第2章 知识抽取:概述、方法

💗💗💗欢迎来到我的博客,你将找到有关如何使用技术解决问题的文章,也会找到某个技术的学习路线。无论你是何种职业,我都希望我的博客对你有所帮助。最后不要忘记订阅我的博客以获取最新文章,也欢…

信号可靠性剖析

问题 基于信号发送的进程间通信方式可靠吗??? 信号查看(kill -l) 信号的分类 不可靠信号 (传统信号) 信号值在 [1, 31] 之间的所有信号 可靠信号 (实时信号) 信号值在 [SIGRTMIN,SIGRTMAX],即:[34&…

odoo自定义提示性校验

背景: 在odoo16的原生的代码里,可以给按钮添加一个 confirm属性,从而达到 提示性校验的效果。 问题: 这个属性加了之后一定会弹出提示性校验的对话框,于是如何根据我们的实际业务,从后端返回提示性信息,…

2023-12-05 Qt学习总结 (AI辅助) 未完待续

点击 <C 语言编程核心突破> 快速C语言入门 Qt学习总结 前言一 Qt是什么二 Qt开发工具链三 Qt编程涉及的术语和名词四 Qt Creator使用五 hello Qt!六 Qt控件和事件七 Qt信号和槽八 Qt自定义信号和槽九 Qt QObject基类十 QWidget基类十一 QMainWindow基类十二 QLabel文本框…

SL6015B降压恒流60V耐压1.5A高辉调光LED芯片 电路简单 元器件少

SL6015B是一款专为LED照明应用设计的降压恒流芯片&#xff0c;具有60V的耐压能力&#xff0c;最大输出电流可达1.5A。它采用高辉调光方式&#xff0c;通过改变输入电压或电流来调节LED的亮度。此外&#xff0c;SL6015B还具有电路简单和元器件数量少的特点&#xff0c;使其成为一…

Dinky之安装部署与基本使用

Dinky之安装部署与基本使用 Dinky概览Linux安装部署解压到指定目录初始化MySQL数据库修改配置文件加载依赖启动Dinky Docker部署启动dinky-mysql-server镜像启动dinky-standalone-server镜像 Dinky的基本使用上传jar包Flink配置集群管理集群实例管理集群配置管理 创建作业语句编…

clickhouse的向量化执行

背景 clickhouse快的很大一部分原因来源于数据的向量化执行&#xff0c;本文就来看一下向量化执行和正常标量执行的区别 SIMD的向量化执行 从上图可知&#xff0c;clickhouse通过SIMD指令可以做到一个cpu周期操作两个向量的运算操作&#xff0c;比起普通的cpu指令效率提高了N…

第17章 匿名函数

第17.1节 匿名函数的基本语法 [捕获列表](参数列表) mutable(可选) 异常属性 -> 返回类型 { // 函数体 }语法规则&#xff1a;lambda表达式可以看成是一般函数的函数名被略去&#xff0c;返回值使用了一个 -> 的形式表示。唯一与普通函数不同的是增加了“捕获列表”。 …

读书笔记-《数据结构与算法》-摘要3[选择排序]

选择排序 核心&#xff1a;不断地选择剩余元素中的最小者。 找到数组中最小元素并将其和数组第一个元素交换位置。在剩下的元素中找到最小元素并将其与数组第二个元素交换&#xff0c;直至整个数组排序。 性质&#xff1a; 比较次数(N-1)(N-2)(N-3)…21~N^2/2交换次数N运行…

【Redis】Redis 的学习教程(十三)Redis 各场景

由于Redis 支持比较丰富的数据结构&#xff0c;因此他能实现的功能并不仅限于缓存&#xff0c;而是可以运用到各种业务场景中&#xff0c;开发出既简洁、又高效的系统 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-bo…

P=NP?

背景&#xff1a;   2000年5月24日&#xff0c;新罕布什尔州的克莱数学研究所列出了数学和计算机科学中七个未解决的问题。然而&#xff0c;直到今天&#xff0c;这些问题中只有一个被解决了&#xff0c;那就是庞加莱猜想&#xff08;Poincar Conjecture&#xff09;——被俄…

上下拉电阻会增强驱动能力吗?

最近看到一个关于上下拉电阻的问题&#xff0c;发现不少人认为上下拉电阻能够增强驱动能力。随后跟几个朋友讨论了一下&#xff0c;大家一致认为不存在上下拉电阻增强驱动能力这回事&#xff0c;因为除了OC输出这类特殊结构外&#xff0c;上下拉电阻就是负载&#xff0c;只会减…