《opencv实用探索·十》opencv双边滤波的简单理解

1、引言
OpenCV中的双边滤波(Bilateral Filtering)是一种保持边缘清晰的滤波方法,它考虑像素的空间关系和像素值之间的差异。双边滤波对于去除噪声的同时保持图像的边缘非常有效,它也是一种非线性滤波。

双边滤波采用了两个高斯滤波的结合。一个负责计算空间邻近度的权值,也就是常用的高斯滤波器原理。而另一个负责计算像素值相似度的权值。在两个高斯滤波的同时作用下,就是双边滤波。

高斯滤波和双边滤波的效果对比图如下,可以清晰的看到双边滤波在模糊图像的同时也保持了图像边缘的清晰。
在这里插入图片描述

2、双边滤波的数学解析
双边滤波的数学表示如下所示:
在这里插入图片描述
S(i, j):指以 (i, j) 为中心的 (2N+1)x(2N+1) 的大小的范围;
f(k, l):(多个) 输入点;
g(i, j):输出点;
ω(i,j,k,l)为加权系数,其取值决定于空间域滤波器和像素域滤波器的乘积

空间域滤波器和像素域滤波器表现形式分别如下所示:

第一个函数表示当前点与中心点的欧式距离,第二个函数表示当前点灰度与中心点灰度差的绝对值。
在这里插入图片描述
对于高斯滤波,仅用空间距离的权值系数核与图像卷积后,确定中心点的灰度值。即认为离中心点越近的点,其权重系数越大。
双边滤波中加入了对灰度信息的权重,即在邻域内灰度值越接近中心点的灰度值的点权重越大,与中心点灰度值相差大的点权重越小,此权重大小则由像素范围域高斯函数确定。

两者相乘得到最终的卷积模板:
在这里插入图片描述
由于双边滤波需要每个中心点邻域的灰度信息来确定系数,所以速度比一般的滤波慢很多,而且计算量增长速度是核大小的平方。

双边滤波的核函数是空间域核与像素范围域核的综合结果:在图像的平坦区域,像素值变化很小,对应的像素范围域权重接近于1,此时空间域权重起主要作用,相当于进行高斯模糊;在图像的边缘区域,像素值变化很大,像素范围域权重变大,从而保持了边缘的信息。

为了使图像的边缘得到保留,就要根据当前被卷积像素的邻域进行观察,“推断”是否是边缘点和接近边缘的点。因此,结构元素就会改变,从而保留边缘点。下图大概演示了双边滤波的一个过程,右边是输入图像,图中有段灰度的突变,这表示边缘区域。中间的滤波核是将我们原本的高斯核,与一个能“推断”出是否在边缘点的结构元素相乘,得到专属于这个点的结构元素。灰度值高的地方不应该和灰度低的区域进行混合,所以,图像中接近边缘的一个点就会生成中间图这样的结构元素。左边是输出图像,可以看到原图像中的噪声被很好的去除同时也保留了清晰的边缘。
在这里插入图片描述

3、opencv双边滤波接口使用

void bilateralFilter(InputArray src, 
                      OutputArray dst, 
                      int d,
                      double sigmaColor, 
                      double sigmaSpace,
                      int borderType = BORDER_DEFAULT );

第一个参数,输入图像,图像数据类型为必须是CV_8U、CV_32F和CV_64F三者之一,并且通道数必须为单通道或者三通道
第二个参数,OutputArray类型的dst,即目标图像,需要和源图片有一样的尺寸和类型。
第三个参数,int类型的d,表示在滤波过程中每个像素邻域的直径。如果这个值我们设其为非正数,那么OpenCV会从第五个参数sigmaSpace来计算出它来。
第四个参数,颜色空间滤波器的sigma值。这个参数的值越大,就表明该像素邻域内有更宽广的颜色会被混合到一起,产生较大的半相等颜色区域。
第五个参数,空间坐标中滤波器的标准差值,这个参数越大表明越远的像素会相互影响,从而使更大领域中有足够相似的颜色获取相同的颜色。当d>0,d指定了邻域大小且与sigmaSpace无关。否则,d正比于sigmaSpace。
第六个参数,int类型的borderType,用于推断图像外部像素的某种边界模式。注意它有默认值BORDER_DEFAULT。

d怎么设置?
对于每个像素,双边滤波器在其周围的一个正方形窗口内查看相邻像素。这个窗口的大小由 d 控制,它定义了窗口的直径。窗口的大小决定了在进行滤波时考虑的空间范围。
当 d 小于等于 0 时,窗口大小会由 sigmaSpace 来决定。这种情况下,d 的值会根据 sigmaSpace 来计算,确切的说,d 被计算为:d=int(sigmaSpace×1.5)。
这是 OpenCV 中对 d 的特殊处理,使得用户可以直接通过调整 sigmaSpace 控制滤波器的空间范围,而无需显式指定 d 的值。
这种方式可以方便用户,尤其是在不知道或不确定合适的 d 值时。通过调整 sigmaSpace,用户可以更直观地控制滤波器在空间上的影响范围,而无需手动计算 d。
当 d 值较大时,滤波器窗口变得较大,涵盖更广泛的像素,从而导致平均化效果更为显著。这可能导致较大结构的平滑,但也可能使图像细节变得模糊,为了保留图像细节,特别是边缘,通常选择较小的 d 值。较小的 d 值使得滤波器只关注较小的空间邻域,更有效地保留图像的细节和边缘。
保留细节:
如果你的目标是尽量保留图像的细节,特别是图像中的边缘和纹理,可以选择较小的 d 值。通常来说,尝试从 5 或更小的值开始是一个合理的起点
减少噪声:
如果你的图像包含大量噪声,选择稍大一些的 d 值可能会更有效地降低噪声。尝试从 10 或更大的值开始,然后根据需要进行调整。
图像平滑:
如果你的目标是对整个图像进行平滑,可以尝试较大的 d 值。这将导致较大的滤波窗口,对图像的整体结构进行平滑

sigmaColor怎么设置?
平衡平滑和细节:
如果你的目标是在平滑图像的同时尽量保留细节使边缘清晰,可以尝试选择一个中等大小的 sigmaColor。开始时,可以从 25 或 50 开始尝试。
对噪声敏感度:
较小的 sigmaColor 值通常会对颜色变化较小的区域更为敏感,因此可能更适合在图像中有较多噪声的情况。如果你希望减少噪声的影响,可以尝试选择较小的 sigmaColor 值。
颜色变化程度:
根据图像中的颜色变化程度来选择 sigmaColor。如果图像中的颜色变化较大,可能需要选择较大的 sigmaColor。

sigmaSpace怎么设置?
平滑整体图像但保留较多细节:
sigmaSpace: 25-50
对噪声敏感,但仍要进行平滑:
sigmaSpace: 10-20
强烈平滑整个图像,减小细节:
sigmaSpace: 75-100
对大结构保持较好细节,但平滑小结构:
sigmaSpace: 10-20

总结:
平滑整体图像但保留较多细节:
sigmaColor: 25-50
sigmaSpace: 25-50
d: 尝试较小的值,如5-10

对噪声敏感,但仍要进行平滑:
sigmaColor: 相对较小的值,例如10-20
sigmaSpace: 相对较小的值,例如10-20
d: 可以选择中等大小的值,如10-15

强烈平滑整个图像,减小细节:
sigmaColor: 较大的值,例如75-100
sigmaSpace: 较大的值,例如75-100
d: 可以选择相对较大的值,如15-20

对大结构保持较好细节,但平滑小结构:
sigmaColor: 25-50
sigmaSpace: 相对较小的值,例如10-20
d: 中等大小的值,例如10-15

下面是不同参数配比显示的效果:
在这里插入图片描述

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/220195.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

孙宇晨入选The Giving Block年度加密慈善人物

日前,全球主流加密捐赠平台The Giving Block公布了2023年度“加密慈善人物”榜单,以表彰过去一年在加密慈善领域做出卓越贡献的个人。其中,波场TRON创始人、火币HTX全球顾问委员会委员孙宇晨因其瞩目的慈善成就入选该榜单。在榜单评语中,The Giving Block指出,孙宇晨做出了加密…

Verilog if语句阻断z状态传播

一、测试代码 设置两组输入输出,对比使用assign赋值语句与always if语句。 if_assign_test.v timescale 1ns / 1ps // // Engineer: wkk // Module Name: if_assign_test // module if_assign_test(input if_a_in,input if_b_in,input if_c_in,input if_d_in…

Servlet作业1

1.【单选题】 (10分) (B )是一个用 Java 编写的程序,是一种实现了Servlet接口的类,它是由web容器负责创建并调用,在服务器容器上运行,用于接收和响应用户的请求。 A.Filter B.Servlet C.Request D.Res…

c题目16:写一个递归函数,计算N阶乘

每日小语 一生中,最光辉的一天并非功成名就的那一天,而是从悲叹与绝望中产生对人生挑战与勇敢迈向意志的那一天。——福楼拜 自己思考 这个小语呢,我目前还达不到,只是顺其自然,很多东西做起来很有动力,…

MongoDB的学习记录

目录 MongoDB是什么MongoDB为什么存在MongoDB怎么用MongoDB解决什么MongoDB指令开发使用的mongoose模块讲解请看这篇文章 MongoDB是什么 MongoDB是一种开源的、面向文档的NoSQL数据库管理系统。它使用JSON格式来存储数据,具有高可扩展性、高性能、高可用性等特点&a…

探索Selenium的规避检测策略

Selenium之规避检测 背景 ​ 目前很多大网站有对selenium采取了监测机制。在正常情况下我们用浏览器访问相关网站的window.navigator.webdriver的值为 undefined或者为false。而使用selenium访问则该值为true。我们如何伪装,防止被检测出来呢? ​ 这是…

使用 PyWebCopy 在 Python 中克隆网页

更多资料获取 📚 个人网站:ipengtao.com PyWebCopy 是一个用于克隆网页内容的 Python 库,它允许用户从指定的 URL 复制整个网页并保存到本地。本文将介绍 PyWebCopy 的基本用法,以及如何克隆网页并保存网页内容到本地文件夹。 安…

Linux进程间通信之共享内存

📟作者主页:慢热的陕西人 🌴专栏链接:Linux 📣欢迎各位大佬👍点赞🔥关注🚓收藏,🍉留言 本博客主要内容讲解共享内存原理和相关接口的介绍,以及一个…

服务端测试开发必备技能:Mock测试

什么是mock测试 Mock 测试就是在测试活动中,对于某些不容易构造或者不容易获取的数据/场景,用一个Mock对象来创建以便测试的测试方法。 Mock测试常见场景 无法控制第三方系统接口的返回,返回的数据不满足要求依赖的接口还未开发完成&#…

[Redis]基础入门

Redis入门 一、初识Redis Redis是一种键值型的NoSql数据库。 其中键值型,是指Redis中存储的数据都是以key、value对的形式存储,而value的形式多种多样,可以是字符串、数值,甚至是json。 NoSql则是相对于传统关系型数据库而言&a…

【安卓12源码】WMS系列:addWindow 和 removeWindow流程

一、Window 的属性 Window的属性定义在WindowManager的内部类LayoutParams中,了解Window的属性能够更好的理解WMS的内部原理。Window的属性有很多种,与应用开发最密切的有三种,它们分别是Type(Window的类型)、Flag(Window的标志)和SoftInputM…

luceda ipkiss教程 39:修改版图text字体的粗细

通过修改font的line_width就可以修改版图中text字体的粗细: 代码如下: from si_fab import all as pdk import ipkiss3.all as i3class demo(i3.PCell):class Layout(i3.LayoutView):def _generate_elements(self, elems):elems i3.PolygonText(layer…

处理k8s中创建ingress失败

创建ingress: 如果在创建过程中出错了: 处理方法就是: kubectl get ValidatingWebhookConfiguration kubectl delete -A ValidatingWebhookConfiguration ingress-nginx-admission 然后再次创建,发现可以:

AI封测需求强劲, AMD、英伟达等巨头将助推产业链增长 | 百能云芯

近期,超微(AMD)和英伟达(NVIDIA)相继发布了新一轮AI芯片,为封测产业链注入了新的活力。据业内人士透露,客户端对AI封测的需求愈发强劲,整体量能超过原先的估计,其中日月光…

【yolov8】与yolov5的区别及改进详解

图像识别技术在物联网、智能监控等领域广泛应用。而深度学习中的目标检测技术,能够帮助我们对图像中的目标进行识别,进而实现自动化控制。目前,Yolov8和Yolov5是目标检测领域热门的模型。 yolo目标检测原理yolov5详解yolov8yolov8结构图Conv模…

使用cpolar内网穿透实现内网SeaFile私有云盘的公网访问

文章目录 1. 前言2. SeaFile云盘设置2.1 Owncould的安装环境设置2.2 SeaFile下载安装2.3 SeaFile的配置 3. cpolar内网穿透3.1 Cpolar下载安装3.2 Cpolar的注册3.3 Cpolar云端设置3.4 Cpolar本地设置 4.公网访问测试5.结语 1. 前言 现在我们身边的只能设备越来越多&#xff0c…

解决cad找不到msvcr100.dll的有效方法,完美修复dll问题

在计算机使用过程中,我们经常会遇到一些错误提示,其中之一就是由于找不到msvcr100.dll文件而导致CAD软件无法正常运行的情况,系统无法找到所需的动态链接库文件。但是通过一些简单的解决方法,我们可以快速解决这个问题并继续我们的…

深度学习|keras编程基础

使用 tensorflow.keras 接口,组装神经网络层次,训练并预测 参考链接:https://blog.csdn.net/March_A/article/details/129240390?ops_request_misc&request_id&biz_id102&utm_termtensorflow.keras%20&utm_mediumdistribute…

IOday3作业

1> 使用文件IO完成对图像的读写操作 #include<myhead.h>int main(int argc, const char *argv[]) {//只读打开图片int fd-1;if((fd open("./R-C.bmp",O_RDWR))-1){perror("open");return -1;}//向后便宜两个字节找到大小的起始地址lseek(fd,2,S…

全网最新最全面的Appium自动化:Appium常用操作之混合应用webview页面操作--待补充!

上下文操作&#xff1a; 在appium中&#xff0c;对于混合应用&#xff0c;需要进行WebView页面和原生应用的切换 常用的方法如下&#xff1a; 1、context(self) / current_context(self)&#xff1a;返回当前会话的当前上下文&#xff0c;context可以理解为可进入的窗口。对于…