分布式搜索引擎elasticsearch(二)

1.DSL查询文档

elasticsearch的查询依然是基于JSON风格的DSL来实现的。

1.1.DSL查询分类

Elasticsearch提供了基于JSON的DSL(Domain Specific Language)来定义查询。常见的查询类型包括:

  • 查询所有:查询出所有数据,一般测试用。例如:match_all

  • 全文检索(full text)查询:利用分词器对用户输入内容分词,然后去倒排索引库中匹配。例如:

    • match_query

    • multi_match_query

  • 精确查询:根据精确词条值查找数据,一般是查找keyword、数值、日期、boolean等类型字段。例如:

    • ids

    • range

    • term

  • 地理(geo)查询:根据经纬度查询。例如:

    • geo_distance

    • geo_bounding_box

  • 复合(compound)查询:复合查询可以将上述各种查询条件组合起来,合并查询条件。例如:

    • bool

    • function_score

查询的语法基本一致:

GET /indexName/_search
{
  "query": {
    "查询类型": {
      "查询条件": "条件值"
    }
  }
}

我们以查询所有为例,其中:

  • 查询类型为match_all

  • 没有查询条件

// 查询所有
GET /indexName/_search
{
  "query": {
    "match_all": {
    }
  }
}

其它查询无非就是查询类型查询条件的变化。

1.2.全文检索查询

1.2.1.使用场景

全文检索查询的基本流程如下:

  • 对用户搜索的内容做分词,得到词条
  • 根据词条去倒排索引库中匹配,得到文档id
  • 根据文档id找到文档,返回给用户

比较常用的场景包括:

  • 商城的输入框搜索
  • 百度输入框搜索

例如京东:

因为是拿着词条去匹配,因此参与搜索的字段也必须是可分词的text类型的字段。

1.2.2.基本语法

常见的全文检索查询包括:

  • match查询:单字段查询

  • multi_match查询:多字段查询,任意一个字段符合条件就算符合查询条件

match查询语法如下:

GET /indexName/_search
{
  "query": {
    "match": {
      "FIELD": "TEXT"
    }
  }
}

mulit_match语法如下:

GET /indexName/_search
{
  "query": {
    "multi_match": {
      "query": "TEXT",
      "fields": ["FIELD1", " FIELD12"]
    }
  }
}

 

1.2.3.示例

match查询示例:

multi_match查询示例:

可以看到,两种查询结果是一样的,为什么?

因为我们将brand、name、business值都利用copy_to复制到了all字段中。因此你根据三个字段搜索,和根据all字段搜索效果当然一样了。但是,搜索字段越多,对查询性能影响越大,因此建议采用copy_to,然后单字段查询的方式。

1.2.4.总结

match和multi_match的区别是什么?

  • match:根据一个字段查询
  • multi_match:根据多个字段查询,参与查询字段越多,查询性能越差

1.3.精准查询

精确查询一般是查找keyword、数值、日期、boolean等类型字段。所以不会对搜索条件分词。常见的有:

  • term:根据词条精确值查询
  • range:根据值的范围查询

1.3.1.term查询

因为精确查询的字段搜是不分词的字段,因此查询的条件也必须是不分词的词条。查询时,用户输入的内容跟自动值完全匹配时才认为符合条件。如果用户输入的内容过多,反而搜索不到数据。

语法说明:

// term查询
GET /indexName/_search
{
  "query": {
    "term": {
      "FIELD": {
        "value": "VALUE"
      }
    }
  }
}

示例:

当我搜索的是精确词条时,能正确查询出结果:

但是,当我搜索的内容不是词条,而是多个词语形成的短语时,反而搜索不到:

1.3.2.range查询

范围查询,一般应用在对数值类型做范围过滤的时候。比如做价格范围过滤。

基本语法:

// range查询
GET /indexName/_search
{
  "query": {
    "range": {
      "FIELD": {
        "gte": 10, // 这里的gte代表大于等于,gt则代表大于
        "lte": 20 // lte代表小于等于,lt则代表小于
      }
    }
  }
}

1.3.3.总结

精确查询常见的有哪些?

  • term查询:根据词条精确匹配,一般搜索keyword类型、数值类型、布尔类型、日期类型字段
  • range查询:根据数值范围查询,可以是数值、日期的范围

1.4.地理坐标查询

所谓的地理坐标查询,其实就是根据经纬度查询,官方文档:Geo queries | Elasticsearch Guide [8.11] | Elastic

常见的使用场景包括:

  • 携程:搜索我附近的酒店
  • 滴滴:搜索我附近的出租车
  • 微信:搜索我附近的人

附近的酒店:

附近的车:

1.4.1.矩形范围查询

矩形范围查询,也就是geo_bounding_box查询,查询坐标落在某个矩形范围的所有文档:

查询时,需要指定矩形的左上右下两个点的坐标,然后画出一个矩形,落在该矩形内的都是符合条件的点。

语法如下:

// geo_bounding_box查询
GET /indexName/_search
{
  "query": {
    "geo_bounding_box": {
      "FIELD": {
        "top_left": { // 左上点
          "lat": 31.1,
          "lon": 121.5
        },
        "bottom_right": { // 右下点
          "lat": 30.9,
          "lon": 121.7
        }
      }
    }
  }
}
这种并不符合“附近的人”这样的需求,所以我们就不做了。

1.4.2.附近查询

附近查询,也叫做距离查询(geo_distance):查询到指定中心点小于某个距离值的所有文档

换句话来说,在地图上找一个点作为圆心,以指定距离为半径,画一个圆,落在圆内的坐标都算符合条件:

语法说明:

// geo_distance 查询
GET /indexName/_search
{
  "query": {
    "geo_distance": {
      "distance": "15km", // 半径
      "FIELD": "31.21,121.5" // 圆心
    }
  }
}

示例:

我们先搜索陆家嘴附近15km的酒店:

发现共有47家酒店。

然后把半径缩短到3公里:

可以发现,搜索到的酒店数量减少到了5家。

1.5.复合查询

复合(compound)查询:复合查询可以将其它简单查询组合起来,实现更复杂的搜索逻辑。常见的有两种:

  • fuction score:算分函数查询,可以控制文档相关性算分,控制文档排名
  • bool query:布尔查询,利用逻辑关系组合多个其它的查询,实现复杂搜索

1.5.1.相关性算分

当我们利用match查询时,文档结果会根据与搜索词条的关联度打分(_score),返回结果时按照分值降序排列。

例如,我们搜索 "虹桥如家",结果如下:

[
  {
    "_score" : 17.850193,
    "_source" : {
      "name" : "虹桥如家酒店真不错",
    }
  },
  {
    "_score" : 12.259849,
    "_source" : {
      "name" : "外滩如家酒店真不错",
    }
  },
  {
    "_score" : 11.91091,
    "_source" : {
      "name" : "迪士尼如家酒店真不错",
    }
  }
]

在elasticsearch中,早期使用的打分算法是TF-IDF算法,公式如下:

在后来的5.1版本升级中,elasticsearch将算法改进为BM25算法,公式如下:

TF-IDF算法有一各缺陷,就是词条频率越高,文档得分也会越高,单个词条对文档影响较大。而BM25则会让单个词条的算分有一个上限,曲线更加平滑:

小结:elasticsearch会根据词条和文档的相关度做打分,算法由两种:

  • TF-IDF算法
  • BM25算法,elasticsearch5.1版本后采用的算法

1.5.2.算分函数查询

根据相关度打分是比较合理的需求,但合理的不一定是产品经理需要的。

以百度为例,你搜索的结果中,并不是相关度越高排名越靠前,而是谁掏的钱多排名就越靠前。如图:

要想认为控制相关性算分,就需要利用elasticsearch中的function score 查询了。

1)语法说明

function score 查询中包含四部分内容:

  • 原始查询条件:query部分,基于这个条件搜索文档,并且基于BM25算法给文档打分,原始算分(query score)

  • 过滤条件:filter部分,符合该条件的文档才会重新算分

  • 算分函数:符合filter条件的文档要根据这个函数做运算,得到的函数算分(function score),有四种函数

    • weight:函数结果是常量

    • field_value_factor:以文档中的某个字段值作为函数结果

    • random_score:以随机数作为函数结果

    • script_score:自定义算分函数算法

  • 运算模式:算分函数的结果、原始查询的相关性算分,两者之间的运算方式,包括:

    • multiply:相乘

    • replace:用function score替换query score

    • 其它,例如:sum、avg、max、min

function score的运行流程如下:

  • 1)根据原始条件查询搜索文档,并且计算相关性算

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/217058.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

d3dx9_43.dll丢失原因以及5个解决方法详解

在电脑使用过程中,我们可能会遇到一些错误提示,其中之一就是“d3dx9_43.dll缺失”。这个错误提示通常表示我们的电脑上缺少了DirectX的一个组件,而DirectX是游戏和多媒体应用所必需的软件。本文将介绍d3dx9_43.dll缺失对电脑的影响以及其原因…

【从零开始学习Redis | 第六篇】爆改Setnx实现分布式锁

前言: 在Java后端业务中, 如果我们开启了均衡负载模式,也就是多台服务器处理前端的请求,就会产生一个问题:多台服务器就会有多个JVM,多个JVM就会导致服务器集群下的并发问题。我们在这里提出的解决思路是把…

PHP项目启动记录

PHP项目启动记录 1. 项目整体目录2. bash_profile3. nginx的conf配置4. vim /etc/hosts5. php -v6.修改nginx后重新加载nginx7. npm run watch-app --moduleattendance --platformmobile8. vim ~/.zshrc 1. 项目整体目录 2. bash_profile ~/.bash_profile是Mac系统中的一个配置…

Vue项目目录结构

项目结构 目录说明.vscodeVSCode工具的配置文件node_modulesVue项目的运行依赖文件public资源文件夹(浏览器图标)src源码文件夹.gitignore配置git忽略文件index.html入口HTML文件package-lock.json信息描述文件(所有模块)package…

MySQL实现(高可用方案-MHA安装及配置)

MySQL高可用性解决方案Master High Availability (MHA) 是一种在 MySQL 故障转移环境中实现快速故障转移和数据保护的开源软件。MHA 能在 MySQL 主节点发生故障时,自动将备节点提升为主节点,并且不会中断正在进行的 SQL 操作。 需求:主从配置…

编程应用实例,早点快餐店点餐软件支持零售价和会员价,软件定制开发

编程应用实例,早点快餐店点餐软件支持零售价和会员价,软件定制开发 一、编程应用实例: 软件适用范围: 1、早点 2、快餐店 3、面馆 4、汉堡店 5、奶茶店 6、饭店等 程序说明: 二、程序说明: 1、软件…

人机交互——言语信息表示模型

如何将大量的言语碎片进行统一表示和存储,以便能够提取不同类型言语信息中的重要特征和语义信息,并计算和推理用户的交互意图,是一个极具挑战性的问题。 1.言语信息表示模型概述 2.言语信息表示模型结构 3.言语信息表示模型应用

腾讯云2023年双十二活动整理汇总

腾讯云双十二推出了年末感恩回馈活动,年底最后一次大促活动,大家把握好上云时间,小编给大家整理了2023年腾讯云双十二优惠活动,不要错过这次上云好时机! 一、腾讯云双十二活动入口 活动地址:txy.ink/act/ …

迪文串口5使用查询方式发送数据

迪文屏串口5寄存器如下 发送数据我采用的不是中断,而是查询发送标志位实现的。 串口5不像串口2一样(串口2可以位寻址,串口5不行),所以如果采用查询模式,需要判断寄存器的数据,我的写法比较简单…

【初阶解法-数据结构】包含min函数的栈(代码+图示)

【数据结构】刷题-包含min函数的栈(代码图示)-初阶解法 文章目录 【数据结构】刷题-包含min函数的栈(代码图示)-初阶解法题目提炼题目要求分析题目总结思路代码时间/空间复杂度进阶版 题目 定义栈的数据结构,请在该类型中实现一个能够得到栈中所含最小元素的 min 函…

关于rocketMQ踩坑的那些事

在最近,我所写的这个项目需要使用到rocketMQ,为了图方便我便使用的是Windows版本的,但是在使用的过程中首先是发现无法发送消息出去,报错信息为 org.apache.rocketmq.client.exception.MQClientException: Send [3] times, still …

水果店怎么做微信小程序_利用微信小程序实现业绩逆袭

标题:水果店如何利用微信小程序实现业绩逆袭? 随着移动支付的普及,微信小程序已经成为商业领域的一个重要工具。对于水果店来说,利用微信小程序可以更好地拓展业务、提高客户满意度,进而实现业绩逆袭。本文将为你揭示…

java连接池 理解及解释(DBCP、druid、c3p0、HikariCP)

一、在Java开发中,有许多常见的数据库连接池可供选择。以下是一些常见的Java数据库连接池:不使用数据库连接池的特性: 优点:实现简单 缺点:网络 IO 较多数据库的负载较高响应时间较长及 QPS 较低应用频繁的创建连接和关…

【Linux下如何生成coredump文件】

一,什么是coredump 我们经常听到大家说到程序core掉了,需要定位解决,这里说的大部分是指对应程序由于各种异常或者bug导致在运行过程中异常退出或者中止,并且在满足一定条件下(这里为什么说需要满足一定的条件呢&#…

【离散数学】——期末刷题题库(集合)

🎃个人专栏: 🐬 算法设计与分析:算法设计与分析_IT闫的博客-CSDN博客 🐳Java基础:Java基础_IT闫的博客-CSDN博客 🐋c语言:c语言_IT闫的博客-CSDN博客 🐟MySQL&#xff1a…

成为AI产品经理——模型稳定性评估(PSI)

一、PSI作用 稳定性是指模型性能的稳定程度。 上线前需要进行模型的稳定性评估,是否达到上线标准。 上线后需要进行模型的稳定性的观测,判断模型是否需要迭代。 稳定度指标(population stability index ,PSI)。通过PSI指标,我们可以获得不…

学习率设置(写给自己看)

现往你的.py文件上打上以下代码: import torch import numpy as np from torch.optim import SGD from torch.optim import lr_scheduler from torch.nn.parameter import Parametermodel [Parameter(torch.randn(2, 2, requires_gradTrue))] optimizer SGD(mode…

12.04 二叉树中等题

513. 找树左下角的值 给定一个二叉树的 根节点 root,请找出该二叉树的 最底层 最左边 节点的值。 假设二叉树中至少有一个节点。 示例 1: 输入: root [2,1,3] 输出: 1 思路:找到最低层中最左侧的节点值,比较适合层序遍历,返回最…

【matlab】QR分解

QR分解 给定一个mn的矩阵A,其中m≥n,即矩阵A是高矩阵或者是方阵,QR分解将矩阵A分解为两个矩阵Q和R的乘积,其中矩阵Q是一个mn的各列正交的矩阵,即QTQI,矩阵R是一个nn的上三角矩阵,其对角线元素为…

初识动态规划算法(题目加解析)

文章目录 什么是动态规划正文力扣题第 N 个泰波那契数三步问题使用最小花费爬楼梯 总结 什么是动态规划 线性动态规划:是可以用一个dp表来存储内容,并且找到规律存储,按照规律存储。让第i个位置的值等于题目要求的答案 >dp表:dp表就是用一…