深入解析Linux内核网络-拥塞控制系列(一)

谈起网络拥塞控制,大家可能很熟悉八股文中的"加法增大“、”乘法减小“、”慢开始“、“拥塞避免”、“快重传”、“快恢复”等概念。没错,这是一种经典网络拥塞控制算法的基础理论,但在实际的实现时不同的拥塞控制算法,有很大差别。本文从Linux内核源码中学习网络拥塞控制算法的具体实现框架。从当前网络拥塞控制算法的发展历程上看,网络拥塞控制算法的类型主要有以下四种:

  • 基于丢包的拥塞控制算法,这类算法将丢包视为发生了网络拥塞。采取缓慢的探测方式,逐渐增大拥塞窗口,当出现丢包时,将拥塞窗口减少,代表的算法有Tahoe、Reno、NewReno、BIC、Cubic等。
  • 基于延时的拥塞控制算法,这类算法将延时增大视为发生了网络拥塞,延时增大时减少拥塞窗口,延时减少时增大拥塞窗口,代表的算法有Vegas、Westwood等。
  • 基于链路容量的拥塞控制算法,代表算法是BBR,其采用了另类的方式,不再使用丢包、延时等信号去衡量拥塞是否发生,而是直接对网络建模来避免以及应对真实的网络拥塞。
  • 基于学习的拥塞控制算法,这类算法也没有特定的拥塞信号,一般是基于训练数据、评价函数,通过机器学习生成网络拥塞控制策略模型,代表算法有Remy、PCC、Aurora、DRL-CC、Orca等。

由于每类拥塞控制算法的核心理念有很大差别,关于每种算法的实现与原理在后续的文章中进行呈现。本次文章先对Linux内核中网络拥塞控制实现细节、大致框架,进行分析和大概学习。在进行正式的分析前先简单梳理一下常识与概念:

  • 什么是网络拥塞:网络拥塞是指在网络中传输的数据量超过网络链路或节点的处理能力,导致网络延迟增加、丢包率升高和带宽利用率下降的现象。
  • 窗口(Window):如下图的TCP协议头中占据16位,用于接收端告诉发送端还有多少缓冲区可以接收数据。

  • 滑动窗口、发送窗口:下图所示黑色方框代表发送窗口。滑动窗口只是一种形象的称呼,即发送窗口一直移动从而达到发送新的数据的目的,如下图当接收到接收端发来的ACK数据包后发送窗口向右移动。图中灰色的方框代表已经发送且确认的数据,红色代表已发送且刚刚确认的数据,正是因为刚刚确认了5byte的数据,才驱动发送窗口可以向右移动5个单位,使得序号52~56的数据(绿色方框,代表允许发送的待发送数据)可以发送,当37~51区间的数据(蓝色方框,代表发送但未确认的数据包)能够被确认时,发送窗口才能向右滑动。发送窗口前方的数据(黄色方框,不允许发送的待发送数据)只能等待发送窗窗口区间内才能发送。TCP的滑动窗口是动态的,我们可以想象成小学常见的一个数学题,一个水池,体积V,每小时进水量V1,出水量V2。当水池满了就不允许再注入了,如果有个液压系统控制水池大小,那么就可以控制水的注入速率和量。这样的水池就类似TCP的窗口。应用根据自身的处理能力变化,通过本端TCP接收窗口大小控制来对对对端的发送窗口流量限制。

  • 拥塞窗口:上面介绍了发送窗口的概念,在TCP协议中有一个反映网络传输能力的变量,叫做拥塞窗口(congestion window),记作cwnd。发送端实际的发送窗口大小实际是为 接收端通告窗口 rwnd 与 拥塞窗口 cwnd 较小的那个值。
W=min(cwnd,rwnd)

从上面的概念中可以得知,拥塞窗口可以间接反映网络的状况,进而去限制发送窗口的大小。拥塞窗口作为网络拥塞控制中核心变量之一,对网络拥塞控制起到关键作用。如下图是四个核心结构体,四个结构的关系具有面向对象的特征,通过层层继承,实现了类的复用;内核中网络相关的很多函数,参数往往都是struct sock,函数内部依照不同的业务逻辑,将struct sock转换为不同的业务结构。

struct tcp_sockstruct inet_connection_sock结构体的基础上继承而来,在struct inet_connection_sock上增加了一些tcp协议相关的字段,如滑动窗口协议,拥塞算法等一些TCP专有的属性。由于这种继承关系,可以互相转换,如下举例两种转换方式,第一种是struct sock转换为struct tcp_sock,第二种是struct sock转换成struct inet_connection_sock。下面将struct tcp_sock展开可以看到与网络拥塞控制相关的字段。

static inline struct tcp_sock *tcp_sk(const struct sock *sk)
{
 return (struct tcp_sock *)sk;
}
static inline struct inet_connection_sock *inet_csk(const struct sock *sk)
{
 return (struct inet_connection_sock *)sk;
}

struct tcp_sock中定义的关于网络拥塞控制相关的字段如下所示:

struct tcp_sock {//在 inet_connection_sock  基础上增加了 滑动窗口 拥塞控制算法等tcp 专有 属性
    __be32    pred_flags;/*首部预测标志 在接收到 syn 跟新窗口 等时设置此标志 ,
    此标志和时间戳 序号等 用于判断执行 快速还是慢速路径*/

    u64    bytes_received;    /* RFC4898 tcpEStatsAppHCThruOctetsReceived
                 * sum(delta(rcv_nxt)), or how many bytes
                 * were acked.
                 */
    u32    segs_in;    /* RFC4898 tcpEStatsPerfSegsIn
                 * total number of segments in.
                 */
     u32    rcv_nxt;    /* What we want to receive next  等待接收的下一个序列号    */
    u32    copied_seq;    /* Head of yet unread data        */

/* rcv_nxt on last window update sent最早接收但没有确认的序号, 也就是接收窗口的左端,
        在发送ack的时候, rcv_nxt更新 因此rcv_wup 更新比rcv_nxt 滞后一些  */
    u32    rcv_wup;    

    u32    snd_nxt;    /* Next sequence we send 等待发送的下一个序列号        */
    u32    segs_out;    /* RFC4898 tcpEStatsPerfSegsOut
                 * The total number of segments sent.
                 */
    u64    bytes_acked;    /* RFC4898 tcpEStatsAppHCThruOctetsAcked
                 * sum(delta(snd_una)), or how many bytes
                 * were acked.
                 */
    struct u64_stats_sync syncp; /* protects 64bit vars (cf tcp_get_info()) */

     u32    snd_una;    /* First byte we want an ack for  最早一个未被确认的序号    */
     u32    snd_sml;    /* Last byte of the most recently transmitted small packet  最近发送一个小于mss的最后 一个字节序列号
    在成功发送, 如果报文小于mss,跟新这个字段 主要用来判断是否启用 nagle 算法*/
    u32    rcv_tstamp;    /* timestamp of last received ACK (for keepalives)  最近一次收到ack的时间 用于 tcp 保活*/
    u32    lsndtime;    /* timestamp of last sent data packet (for restart window) 最近一次发送 数据包时间*/
    u32    last_oow_ack_time;  /* timestamp of last out-of-window ACK */

    u32    tsoffset;    /* timestamp offset */

    struct list_head tsq_node; /* anchor in tsq_tasklet.head list */
    unsigned long    tsq_flags;

    /* Data for direct copy to user cp 数据到用户进程的控制块 有用户缓存以及其长度 prequeue 队列 其内存*/
    struct {
        struct sk_buff_head    prequeue // tcp 段 缓冲到此队列 知道进程主动读取才真正的处理;
        struct task_struct    *task;
        struct msghdr        *msg;
        int            memory;// prequeue 当前消耗的内存
        int            len;// 用户缓存中 当前可以使用的缓存大小 
    } ucopy;

    u32    snd_wl1;    /* Sequence for window update记录跟新发送窗口的那个ack 段号 用来判断是否 需要跟新窗口
    如果后续收到ack大于snd_wll 则表示需要更新 窗口*/
    u32    snd_wnd;    /* The window we expect to receive 接收方 提供的窗口大小 也就是发送方窗口大小    */
    u32    max_window;    /* Maximal window ever seen from peer 接收方通告的最大窗口    */
    u32    mss_cache;    /* Cached effective mss, not including SACKS  发送方当前有效的mss*/

    u32    window_clamp;    /* Maximal window to advertise 滑动窗口最大值        */
    u32    rcv_ssthresh;    /* Current window clamp  当前接收窗口的阈值            */
    ......
     u32    snd_ssthresh;    /* Slow start size threshold 拥塞控制 满启动阈值        */
     u32    snd_cwnd;    /* Sending congestion window    当前拥塞窗口大小  ---发送的拥塞窗口    */
    u32    snd_cwnd_cnt;    /* Linear increase counter    自从上次调整拥塞窗口后 到目前位置接收到的
    总ack段数 如果该字段为0  表示调整拥塞窗口但是没有收到ack,调整拥塞窗口之后 收到ack段就回让
    snd_cwnd_cnt 加1 */
    u32    snd_cwnd_clamp; /* Do not allow snd_cwnd to grow above this  snd_cwnd  的最大值*/
    u32    snd_cwnd_used;//记录已经从队列发送而没有被ack的段数
    u32    snd_cwnd_stamp;//记录最近一次检验cwnd 的时间;     拥塞期间 每次会检验cwnd而调节拥塞窗口 ,
    //在非拥塞期间,为了防止应用层序造成拥塞窗口失效  因此在发送后 有必要检测cwnd
    u32    prior_cwnd;    /* Congestion window at start of Recovery.在进入 Recovery 状态时的拥塞窗口 */
    u32    prr_delivered;    /* Number of newly delivered packets to在恢复阶段给接收者新发送包的数量
                 * receiver in Recovery. */
    u32    prr_out;    /* Total number of pkts sent during Recovery.在恢复阶段一共发送的包的数量 */

     u32    rcv_wnd;    /* Current receiver window 当前接收窗口的大小        */
    u32    write_seq;    /* Tail(+1) of data held in tcp send buffer   已加入发送队列中的最后一个字节序号*/
    u32    notsent_lowat;    /* TCP_NOTSENT_LOWAT */
    u32    pushed_seq;    /* Last pushed seq, required to talk to windows */
    u32    lost_out;    /* Lost packets丢失的数据报            */
    u32    sacked_out;    /* SACK'd packets启用 SACK 时,通过 SACK 的 TCP 选项标识已接收到的段的数量。
                 不启用 SACK 时,标识接收到的重复确认的次数,该值在接收到确认新数据段时被清除。            */
    u32    fackets_out;    /* FACK'd packets    FACK'd packets 记录 SND.UNA 与 (SACK 选项中目前接收方收到的段中最高序号段) 之间的段数。FACK
            用 SACK 选项来计算丢失在网络中上的段数  lost_out=fackets_out-sacked_out  left_out=fackets_out        */

    /* from STCP, retrans queue hinting */
    struct sk_buff* lost_skb_hint; /*在重传队列中, 缓存下次要标志的段*/
    struct sk_buff *retransmit_skb_hint;/* 表示将要重传的起始包*/

    /* OOO segments go in this list. Note that socket lock must be held,
     * as we do not use sk_buff_head lock.
     */
    struct sk_buff_head    out_of_order_queue;

    /* SACKs data, these 2 need to be together (see tcp_options_write) */
    struct tcp_sack_block duplicate_sack[1]; /* D-SACK block */
    struct tcp_sack_block selective_acks[4]; /* The SACKS themselves*/

    struct tcp_sack_block recv_sack_cache[4];

    struct sk_buff *highest_sack;   /* skb just after the highest
                     * skb with SACKed bit set
                     * (validity guaranteed only if
                     * sacked_out > 0)
                     */

    int     lost_cnt_hint;/* 已经标志了多少个段 */
    u32     retransmit_high;    /* L-bits may be on up to this seqno  表示将要重传的起始包 */

    u32    prior_ssthresh; /* ssthresh saved at recovery start表示前一个snd_ssthresh得大小    */
    u32    high_seq;    /* snd_nxt at onset of congestion拥塞开始时,snd_nxt的大----开始拥塞的时候下一个要发送的序号字节*/

    u32    retrans_stamp;    /* Timestamp of the last retransmit,
                 * also used in SYN-SENT to remember stamp of
                 * the first SYN. */
    u32    undo_marker;    /* snd_una upon a new recovery episode. 在使用 F-RTO 算法进行发送超时处理,或进入 Recovery 进行重传,
                    或进入 Loss 开始慢启动时,记录当时 SND.UNA, 标记重传起始点。它是检测是否可以进行拥塞控制撤销的条件之一,一般在完成
                    拥塞撤销操作或进入拥塞控制 Loss 状态后会清零。*/
    int    undo_retrans;    /* number of undoable retransmissions. 在恢复拥塞控制之前可进行撤销的重传段数。
                    在进入 FTRO 算法或 拥塞状态 Loss 时,清零,在重传时计数,是检测是否可以进行拥塞撤销的条件之一。*/
    u32    total_retrans;    /* Total retransmits for entire connection */

    u32    urg_seq;    /* Seq of received urgent pointer  紧急数据的序号 所在段的序号和紧急指针相加获得*/
    unsigned int        keepalive_time;      /* time before keep alive takes place */
    unsigned int        keepalive_intvl;  /* time interval between keep alive probes */

    int            linger2;

/* Receiver side RTT estimation */
    struct {
        u32    rtt;
        u32    seq;
        u32    time;
    } rcv_rtt_est;

/* Receiver queue space */
    struct {
        int    space;
        u32    seq;
        u32    time;
    } rcvq_space;

/* TCP-specific MTU probe information. */
    struct {
        u32          probe_seq_start;
        u32          probe_seq_end;
    } mtu_probe;
    u32    mtu_info; /* We received an ICMP_FRAG_NEEDED / ICMPV6_PKT_TOOBIG
               * while socket was owned by user.
               */

#ifdef CONFIG_TCP_MD5SIG
    const struct tcp_sock_af_ops    *af_specific;
    struct tcp_md5sig_info    __rcu *md5sig_info;
#endif

    struct tcp_fastopen_request *fastopen_req;

    struct request_sock *fastopen_rsk;
    u32    *saved_syn;
};

下面看一个特别重要的框架,也可以称为是拥塞控制引擎,如下结构体所示,tcp_congestion_ops描述了一套拥塞控制算法所需要支持的操作。这个框架定义了一些钩子函数,Linux内核中不同的拥塞控制算法根据算法思想实现以下钩子函数,然后进行注册即可完成拥塞控制算法的设计。

 资料直通车:Linux内核源码技术学习路线+视频教程内核源码

学习直通车:Linuxc/c++高级开发【直播公开课】

零声白金VIP体验卡:零声白金VIP体验卡(含基础架构/高性能存储/golang/QT/音视频/Linux内核)

struct tcp_congestion_ops {
 struct list_head list;
 u32 key;
 u32 flags;

 /* initialize private data (optional) */
 void (*init)(struct sock *sk);
 /* cleanup private data  (optional) */
 void (*release)(struct sock *sk);

 /* return slow start threshold (required) */
 u32 (*ssthresh)(struct sock *sk);
 /* do new cwnd calculation (required) */
 void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
 /* call before changing ca_state (optional) */
 void (*set_state)(struct sock *sk, u8 new_state);
 /* call when cwnd event occurs (optional) */
 void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
 /* call when ack arrives (optional) */
 void (*in_ack_event)(struct sock *sk, u32 flags);
 /* new value of cwnd after loss (required) */
 u32  (*undo_cwnd)(struct sock *sk);
 /* hook for packet ack accounting (optional) */
 void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
 /* suggest number of segments for each skb to transmit (optional) */
 u32 (*tso_segs_goal)(struct sock *sk);
 /* returns the multiplier used in tcp_sndbuf_expand (optional) */
 u32 (*sndbuf_expand)(struct sock *sk);
 /* call when packets are delivered to update cwnd and pacing rate,
  * after all the ca_state processing. (optional)
  */
 void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
 /* get info for inet_diag (optional) */
 size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
      union tcp_cc_info *info);

 char   name[TCP_CA_NAME_MAX];
 struct module  *owner;
};

用户可以通过自定义以上钩子函数实现定制拥塞控制算法,并进行注册。以下截取cubic拥塞控制算法对接口的实现、注册的代码片段。可以注意到cubic只实现了拥塞控制引擎tcp_congestion_ops的部分钩子函数,因为有一些钩子函数是必须实现,有一些是根据算法选择实现的。

static struct tcp_congestion_ops cubictcp __read_mostly = {
 .init  = bictcp_init,
 .ssthresh = bictcp_recalc_ssthresh,
 .cong_avoid = bictcp_cong_avoid,
 .set_state = bictcp_state,
 .undo_cwnd = tcp_reno_undo_cwnd,
 .cwnd_event = bictcp_cwnd_event,
 .pkts_acked     = bictcp_acked,
 .owner  = THIS_MODULE,
 .name  = "cubic",
};

static int __init cubictcp_register(void)
{
 BUILD_BUG_ON(sizeof(struct bictcp) > ICSK_CA_PRIV_SIZE);
 beta_scale = 8*(BICTCP_BETA_SCALE+beta) / 3
  / (BICTCP_BETA_SCALE - beta);

 cube_rtt_scale = (bic_scale * 10); /* 1024*c/rtt */

 cube_factor = 1ull << (10+3*BICTCP_HZ); /* 2^40 */

 /* divide by bic_scale and by constant Srtt (100ms) */
 do_div(cube_factor, bic_scale * 10);

 return tcp_register_congestion_control(&cubictcp);
}

static void __exit cubictcp_unregister(void)
{
 tcp_unregister_congestion_control(&cubictcp);
}

module_init(cubictcp_register);
module_exit(cubictcp_unregister);

在Linux用户态可以通过参数查看当前使用的拥塞控制算法、当前可支持的拥塞控制算法。如下表所示是两个参数以及含义。

法。可以看到当前可支持的拥塞控制算法中包含bbr算法,bbr算法在内核版本4.9开始支持的。

如果留意的话,在本文开始时提到了很多传统的拥塞控制算法,那么在上面的命令中没有看到,其实有众多拥塞控制算法在Linux中没有进行安装,如下命令查看Linux系统中所有已实现的拥塞控制算法模块

如果想安装特定的拥塞控制算法可以通过modprobe命令对指定的拥塞控制算法进行安装,如下所示安装了Vegas拥塞控制算法,此时再查看当前系统中可以使用的拥塞控制算法,多了一个Vegas算法。

除了可以动态查看当前Linux系统可用的拥塞控制算法、当前使用的拥塞控制算法外还可以动态切换拥塞控制算法。如下所示将默认的cubic拥塞控制算法切换为bbr拥塞控制算法。

切换后验证如下,当前运行的拥塞控制算法由之前的cubic拥塞控制算法切换到了bbr拥塞控制算法。

至此本文关于Linux内核网络中拥塞控制的大概框架、原理介绍到这,文中有表达有误或者不准确的地方欢迎指正。关于具体的每个拥塞控制算法的实现,将在后续文章中呈现。

原文作者:技术简说

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/215872.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

I/O口接口扩展----82C55

目录 一.扩展的I/O接口功能 二.端口的编址 1.独立编址 2.统一编制 三.I/O数据的传送方式 四.I/O接口电路----82C55 1.82C55的引脚及其内部结构 2.工作方式选择控制字及端口PC置位/复位控制字 3.82C55的三种工作方式 (1)方式0 (2)方式1 (3)方式2 4.AT89S52单片机与…

树_完全二叉树节点个数

//给你一棵 完全二叉树 的根节点 root &#xff0c;求出该树的节点个数。 // // 完全二叉树 的定义如下&#xff1a;在完全二叉树中&#xff0c;除了最底层节点可能没填满外&#xff0c;其余每层节点数都达到最大值&#xff0c;并且最下面一层的节点都集中在该层最左边的若干位…

安卓1.0明显是基于linux内核开发的,安卓1.0是不是linux套壳?

安卓1.0明显是基于linux内核开发的&#xff0c;安卓1.0是不是linux套壳&#xff1f; 在开始前我有一些资料&#xff0c;是我根据自己从业十年经验&#xff0c;熬夜搞了几个通宵&#xff0c;精心整理了一份「安卓开发资料从专业入门到高级教程工具包」&#xff0c;点个关注&…

华为OD机试 - 园区参观路径(Java JS Python C)

题目描述 园区某部门举办了Family Day,邀请员工及其家属参加; 将公司园区视为一个矩形,起始园区设置在左上角,终点园区设置在右下角; 家属参观园区时,只能向右和向下园区前进,求从起始园区到终点园区会有多少条不同的参观路径。 输入描述 第一行为园区的长和宽; 后…

王炸cpu-龙芯3A6000

国产 CPU 性能媲美 Intel 酷睿这事儿&#xff0c;可能真的已经实现了。 没错&#xff0c;那颗有着多次爆料拉满大家期待值的龙芯 3A6000&#xff0c;终于正式发布。 就在今天上午&#xff0c;龙芯中科在 2023 年龙芯产品发布暨用户大会上正式带来了这颗 CPU。 整场发布会 PPT …

windows11 调整鼠标灵敏度方法

首先 我们打开电脑设置 或者在 此电脑/此计算机/我的电脑 右击选择属性 然后 有的电脑 左侧菜单中 直接就有 设备 然后在设备中直接就可以找到 鼠标 选项 调整光标速度即可 如果操作系统和我的一样 可以直接搜索鼠标 然后 选择 鼠标设置 然后 调整上面的鼠标指针速度即可

「C++」C++11新特性

&#x1f4bb;文章目录 &#x1f4c4;前言右值引用概念右值引用的意义移动构造和移动赋值完美转发 lambada表达式包装器function包装器bind包装器 &#x1f4d3;总结 &#x1f4c4;前言 C标准10年磨一剑&#xff0c;于2011年迎来了它真正意义上的第二个标准&#xff0c;C11能更…

备忘录不小心删了怎么办?如何找回我的备忘录?

如果你的记性不太好&#xff0c;或者每天需要记住、完成的事情很多&#xff0c;那么养成随手记事的好习惯是非常有必要的。因为手机是每个成年人都会随身携带的电子设备&#xff0c;所以直接在手机上记录事情比较简单、便捷。而手机备忘录、便签、笔记等工具类软件&#xff0c;…

Docker快速理解及简介

docker快速理解及简介 1.Docker为什么出现&#xff1f; 迁移一个项目时&#xff0c;运行文档、配置环境、运行环境、运行依赖包、操作系统发行版、内核等都需要重新安装配置&#xff0c;比较麻烦。 2.Docker是什么&#xff1f; Docker是基于Go语言实现的云开源项目。解决了运行…

ToDesk优惠码来了,需要的不容错过

最近发现Todesk也有活动了&#xff0c;很多小伙伴不知道&#xff0c;除了中秋国庆双节&#xff0c;ToDesk另有专享优惠码&#xff0c;输入优惠码最高立减25元&#xff0c;即使是活动日也能折上折&#xff0c;不影响此优惠码的折扣力度&#xff01; Todesk作为国内优良的远程控制…

ssm土家风景文化管理平台源码和论文答辩PPT

摘要 土家风景文化管理平台是土家风景文化管理必不可少的一个部分。在风景文化管理的整个过程中&#xff0c;平台担负着最重要的角色。为满足如今日益复杂的管理需求&#xff0c;各类土家风景文化管理平台也在不断改进。本课题所设计的土家风景文化管理平台&#xff0c;使用jav…

LED恒流开关调节器FP7123,提供稳定电流,提升LED产品效果!

目录 一、FP7123概述 二、FP7123功能 LED恒流开关调节器FP7123的优势不仅仅在于提供稳定的电流&#xff0c;还包括以下几个方面&#xff1a; 三、应用领域 随着科技的不断发展&#xff0c;LED照明产品已经成为人们生活中不可或缺的一部分。然而&#xff0c;LED的亮度和稳定性…

mac M系列芯片安装chatGLM3-6b模型

1 环境安装 1.1 mac安装conda. 下载miniconda&#xff0c;并安装 curl -O https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-arm64.sh sh Miniconda3-latest-MacOSX-arm64.sh1.2 创建虚拟环境并激活 创建名为chatglm3的虚拟环境&#xff0c;python版本为3.10…

环形链表 2:找出入环的第一个节点

题目描述&#xff1a; 给定一个链表返回链表开始入环的第一个点。如果链表无环&#xff0c;则返回NULL。 为了表示给定链表中的环&#xff0c;我们使用整数pos来表示链表尾连接到链表中的位置&#xff08;索引从0开始&#xff09;。如果pos是-1&#xff0c;则在该链表中没有环。…

Autosar标准解析

AUTOSAR&#xff08; Automotive Open System Architecture &#xff09;——汽车开放系统架构&#xff0c;是一家致力于制定汽车电子软件标准的联盟&#xff08;宝马、博世、大陆、戴姆勒、福特、标志雪铁龙、丰田和大众&#xff09;&#xff0c;成立于2003年&#xff0c;是一…

关于自动化测试框架pytest的Fixture固件

什么是固件 Fixture 翻译成中文即是固件的意思。它其实就是一些函数&#xff0c;会在执行测试方法/测试函数之前&#xff08;或之后&#xff09;加载运行它们&#xff0c;常见的如接口用例在请求接口前数据库的初始连接&#xff0c;和请求之后关闭数据库的操作。 我们之前在A…

[Unity数据管理]自定义菜单创建Unity内部数据表(ScriptableObject)

Unity 在开发的时候如果数据量比较大&#xff0c;或者一部分数据需要存在云端&#xff0c;那么就需要一些数据库 轻量型到大型的包括&#xff1a; 数组-内存存储读取 列表-内存存储读取 List<T> tList new List<T>(); XML-硬盘存储读取 JSON-硬盘存储读取 …

SoC with CPLD and MCU ?

AG32 MCU 产品支持多种接口外设&#xff0c;具备与业界主流产品的兼容性&#xff0c;并内置额外的2K FPGA 可编程逻辑。 产品支持 LQFP-48&#xff0c;LQFP-64&#xff0c;LQFP-100 &#xff0c;QFN-32等不同封装。其所有可用 IO 都可以任意地进行映射和互换&#xff0c;以灵活…

2024版软件测试面试100问(答案+文档)

软件测试面试百题 1、问&#xff1a;你在测试中发现了一个bug&#xff0c;但是开发经理认为这不是一个bug&#xff0c;你应该怎样解决? 首先&#xff0c;将问题提交到缺陷管理库里面进行备案。 然后&#xff0c;要获取判断的依据和标准&#xff1a; 根据需求说明书、产品说…

二阶变系数线性微分方程

1、变量替换法 欧拉方程 是常数&#xff0c;是已知的函数。 二阶欧拉方程 (1) 当时&#xff0c;令,则 代入&#xff08;1&#xff09;中&#xff0c; .这样就把欧拉方程&#xff0c;化成了二阶常系数非齐次微分方程 当x<0时&#xff0c;令, 例题 解:令,则 代入上面的推…