由浅入深Netty入门案例

目录

  • 1 概述
    • 1.1 Netty 是什么?
    • 1.2 Netty 的作者
    • 1.3 Netty 的地位
    • 1.4 Netty 的优势
  • 2 Hello World
    • 2.1 目标
    • 2.2 服务器端
    • 2.3 客户端
    • 2.4 流程梳理
    • 2.5 提示


1 概述

在这里插入图片描述

1.1 Netty 是什么?

Netty is an asynchronous event-driven network application framework
for rapid development of maintainable high performance protocol servers & clients.

Netty 是一个异步的、基于事件驱动的网络应用框架,用于快速开发可维护、高性能的网络服务器和客户端

1.2 Netty 的作者

在这里插入图片描述

他还是另一个著名网络应用框架 Mina 的重要贡献者

1.3 Netty 的地位

Netty 在 Java 网络应用框架中的地位就好比:Spring 框架在 JavaEE 开发中的地位

以下的框架都使用了 Netty,因为它们有网络通信需求!

  • Cassandra - nosql 数据库
  • Spark - 大数据分布式计算框架
  • Hadoop - 大数据分布式存储框架
  • RocketMQ - ali 开源的消息队列
  • ElasticSearch - 搜索引擎
  • gRPC - rpc 框架
  • Dubbo - rpc 框架
  • Spring 5.x - flux api 完全抛弃了 tomcat ,使用 netty 作为服务器端
  • Zookeeper - 分布式协调框架

1.4 Netty 的优势

  • Netty vs NIO,工作量大,bug 多
    • 需要自己构建协议
    • 解决 TCP 传输问题,如粘包、半包
    • epoll 空轮询导致 CPU 100%
    • 对 API 进行增强,使之更易用,如 FastThreadLocal => ThreadLocal,ByteBuf => ByteBuffer
  • Netty vs 其它网络应用框架
    • Mina 由 apache 维护,将来 3.x 版本可能会有较大重构,破坏 API 向下兼容性,Netty 的开发迭代更迅速,API 更简洁、文档更优秀
    • 久经考验,16年,Netty 版本
      • 2.x 2004
      • 3.x 2008
      • 4.x 2013
      • 5.x 已废弃(没有明显的性能提升,维护成本高)

2 Hello World

2.1 目标

开发一个简单的服务器端和客户端

  • 客户端向服务器端发送 hello, world
  • 服务器仅接收,不返回

加入依赖

<dependency>
    <groupId>io.netty</groupId>
    <artifactId>netty-all</artifactId>
    <version>4.1.39.Final</version>
</dependency>

2.2 服务器端

new ServerBootstrap()
    .group(new NioEventLoopGroup()) // 1
    .channel(NioServerSocketChannel.class) // 2
    .childHandler(new ChannelInitializer<NioSocketChannel>() { // 3
        protected void initChannel(NioSocketChannel ch) {
            ch.pipeline().addLast(new StringDecoder()); // 5
            ch.pipeline().addLast(new SimpleChannelInboundHandler<String>() { // 6
                @Override
                protected void channelRead0(ChannelHandlerContext ctx, String msg) {
                    System.out.println(msg);
                }
            });
        }
    })
    .bind(8080); // 4

代码解读

  • 1 处,创建 NioEventLoopGroup,可以简单理解为 线程池 + Selector 后面会详细展开

  • 2 处,选择服务 Scoket 实现类,其中 NioServerSocketChannel 表示基于 NIO 的服务器端实现,其它实现还有

在这里插入图片描述

  • 3 处,为啥方法叫 childHandler,是接下来添加的处理器都是给 SocketChannel 用的,而不是给 ServerSocketChannel。ChannelInitializer 处理器(仅执行一次),它的作用是待客户端 SocketChannel 建立连接后,执行 initChannel 以便添加更多的处理器

  • 4 处,ServerSocketChannel 绑定的监听端口

  • 5 处,SocketChannel 的处理器,解码 ByteBuf => String

  • 6 处,SocketChannel 的业务处理器,使用上一个处理器的处理结果

2.3 客户端

new Bootstrap()
    .group(new NioEventLoopGroup()) // 1
    .channel(NioSocketChannel.class) // 2
    .handler(new ChannelInitializer<Channel>() { // 3
        @Override
        protected void initChannel(Channel ch) {
            ch.pipeline().addLast(new StringEncoder()); // 8
        }
    })
    .connect("127.0.0.1", 8080) // 4
    .sync() // 5
    .channel() // 6
    .writeAndFlush(new Date() + ": hello world!"); // 7

代码解读

  • 1 处,创建 NioEventLoopGroup,同 Server

  • 2 处,选择客户 Socket 实现类,NioSocketChannel 表示基于 NIO 的客户端实现,其它实现还有

在这里插入图片描述

  • 3 处,添加 SocketChannel 的处理器,ChannelInitializer 处理器(仅执行一次),它的作用是待客户端 SocketChannel 建立连接后,执行 initChannel 以便添加更多的处理器
  • 4 处,指定要连接的服务器和端口
  • 5 处,Netty 中很多方法都是异步的,如 connect,这时需要使用 sync 方法等待 connect 建立连接完毕
  • 6 处,获取 channel 对象,它即为通道抽象,可以进行数据读写操作
  • 7 处,写入消息并清空缓冲区
  • 8 处,消息会经过通道 handler 处理,这里是将 String => ByteBuf 发出
  • 数据经过网络传输,到达服务器端,服务器端 5 和 6 处的 handler 先后被触发,走完一个流程

2.4 流程梳理

在这里插入图片描述

2.5 提示

一开始需要树立正确的观念

  • 把 channel 理解为数据的通道
  • 把 msg 理解为流动的数据,最开始输入是 ByteBuf,但经过 pipeline 的加工,会变成其它类型对象,最后输出又变成 ByteBuf
  • 把 handler 理解为数据的处理工序
    • 工序有多道,合在一起就是 pipeline,pipeline 负责发布事件(读、读取完成…)传播给每个 handler, handler 对自己感兴趣的事件进行处理(重写了相应事件处理方法)
    • handler 分 Inbound 和 Outbound 两类
  • 把 eventLoop 理解为处理数据的工人
    • 工人可以管理多个 channel 的 io 操作,并且一旦工人负责了某个 channel,就要负责到底(绑定)
    • 工人既可以执行 io 操作,也可以进行任务处理,每位工人有任务队列,队列里可以堆放多个 channel 的待处理任务,任务分为普通任务、定时任务
    • 工人按照 pipeline 顺序,依次按照 handler 的规划(代码)处理数据,可以为每道工序指定不同的工人

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/21566.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

免费可用 ChatGPT 网页版

前言 ChatGPT&#xff08;全名&#xff1a;Chat Generative Pre-trained Transformer&#xff09;&#xff0c;美国OpenAI 研发的聊天机器人程序 &#xff0c;于2022年11月30日发布 。ChatGPT是人工智能技术驱动的自然语言处理工具&#xff0c;它能够通过理解和学习人类的语言来…

在 Python 中执行逐元素加法

文章目录 Python 中的逐元素加法在 Python 中使用 zip() 函数执行逐元素加法在 Python 中使用 map() 函数执行逐元素加法在 Python 中使用 NumPy 执行逐元素加法 我们将通过示例介绍在 Python 中按元素添加两个列表的不同方法。 Python 中的逐元素加法 在 Python 中使用列表时…

最简单配置jenkins容器使用宿主机的docker方法

构建镜像和发布镜像到harbor都需要使用到docker命令。而在Jenkins容器内部安装Docker官方推荐直接采用宿主机带的Docker即可 设置Jenkins容器使用宿主机Docker 设置宿主机docker.sock权限 chown root:root /var/run/docker.sock chmod orw /var/run/docker.sock 添加数据卷 v…

Nacos之服务配置中心

1.基础配置 1.1.新建模块cloudalibaba-config-nacos-client3377 1.1.1.POM <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0"xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance…

网络:网络分层与协议/OSI七层模型/(TCP/IP模型)

一、简单理解 OSI模型(Open System Interconnection)&#xff1a; 七层模型&#xff0c;亦称OSI&#xff08;Open System Interconnection&#xff09;。参考模型是国际标准化组织&#xff08;ISO&#xff09;制定的一个用于计算机或通信系统间互联的标准体系&#xff0c;一般…

chatgpt赋能Python-pythondic

Python Dict - Python中最有用的数据结构之一 当谈到Python的数据结构时&#xff0c;Python字典&#xff08;Python Dict&#xff09;是最常用和最有用的数据结构之一。Python字典是一个非常强大且多才多艺的数据结构&#xff0c;它不仅易于学习和使用&#xff0c;而且可以大大…

【嵌入式Linux】设备树基本语法

设备树基本语法 1_总领-本期设备树视频要怎么讲&#xff1f;讲什么&#xff1f;_哔哩哔哩_bilibili 基本的 特殊的 中断控制 描述GIC控制器 时钟 CPU GPIO 个数&#xff0c;保留范围&#xff08;起始、长度&#xff09;&#xff0c;个数对应的名字 GPIO映射-这个脚被用了换一…

CBFS Vault 2022 for .NET Crack

将多个文件打包到一个 Vault - 一个“文件中的文件系统”&#xff0c;完成每个文件的压缩、透明加密和随机读/写访问。 亮点包括新的日记选项、用于更好地控制和跟踪的新事件&#xff0c;以及一系列核心性能和可用性改进 [了解更多]。 CBFS保险库 在任何地方存储一个完整的文件…

javascript-基础知识点总结

目录 &#xff08;一&#xff09;基础语法 1、javaScript引入方式 2、变量与常量 3、数据类型 typeof操作符 4、运算符 5、输出函数 6、类型转化 7、转移字符 8、注释 &#xff08;二&#xff09;流程控制 1、选择结构 switch 2、循环结构 for &#xff08;三&…

neovim下window的快捷切换

neovim下window的快捷切换 在使用emacs的时候&#xff0c;喜欢加插件window-numbering。 这样在分屏之后的emacs里&#xff0c;通过配置快捷键leaderwnumber 跳转到对应的windows, 而且该软件会在对应底部显示数字提示&#xff0c;非常方便。 另外:为什么不用快捷键leadernumb…

【Linux系统】Linux进程信号详解

Linux进程信号 0 引言1 认识信号1.1 什么是信号1.2 发送信号的本质1.3 信号的处理 2 信号的产生2.1 键盘产生2.2 调用系统函数向进程发送信号2.3 由软件条件产生信号2.4 硬件异常产生信号 3 信号的保存4 信号的处理5 总结 0 引言 本篇文章会从Linux信号的产生到信号的保存&…

Linux上开启coredump

Linux上开启core dump Core dump&#xff08;核心转储&#xff09;是在程序崩溃时生成的一种文件&#xff0c;其中包含了程序在崩溃时的内存状态信息。它可以帮助程序员在调试程序时快速定位问题&#xff0c;并且是一种非常有用的调试工具。core dump的作用如下&#xff1a; 帮…

【KD-Tree】基于k-d树的KNN算法实现

文章目录 一、什么是KD-Tree&#xff1f;二、k-d树的结构三、k-d树的创建四、k-d树的应用五、KD-Tree的优缺点 例题JZPFAR 一、什么是KD-Tree&#xff1f; KD-Tree&#xff0c;又称&#xff08;k-dimensional tree&#xff09;&#xff0c;是一种基于二叉树的数据结构。它可以…

机器学习项目实战-能源利用率 Part-2(探索性数据分析)

Part-1部分的博客可见下&#xff1a; 机器学习项目实战-能源利用率 Part-1&#xff08;数据清洗&#xff09; 这部分进行的是探索性数据分析。 探索性数据分析 Exploratory Data Analysis 简单的说&#xff0c;就是画图来分析数据。 分析标签数据 data data.rename(colum…

平抑风电波动的电-氢混合储能容量优化配置(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

Redis缓存架构详解

文章目录 Redis缓存结构详解前言Redis 缓存架构redis 和db数据一致性先写db还是写redis如果是先写db,再删除缓存呢&#xff1f;延迟双删 简单的缓存,并发不高,没啥流量简单的缓存,并发高,但是存在redis和 Db 双写不一致,读写并发不一致问题解决方案 1解决方案 2解决方案 3读写锁…

更高效便捷的开发体验——Cloud Studio 编辑器命令行工具

Cloud Studio 是一个云端在线开发平台&#xff0c;在 Cloud Studio 的控制台页面中&#xff0c;可以方便快捷创建或者打开一个工作空间。工作空间提供了在线编辑器给大家访问远端开发环境。大部分开发时间都与这个在线编辑器打交道&#xff0c;在线编辑器效果如下图所示&#x…

由浅入深Netty简易实现RPC框架

目录 1 准备工作2 服务器 handler3 客户端代码第一版4 客户端 handler 第一版5 客户端代码 第二版6 客户端 handler 第二版 1 准备工作 这些代码可以认为是现成的&#xff0c;无需从头编写练习 为了简化起见&#xff0c;在原来聊天项目的基础上新增 Rpc 请求和响应消息 Data …

chatgpt赋能Python-pythonendswith

Python endswith方法&#xff1a;介绍、用法和示例 在编程中&#xff0c;经常需要查找字符串是否以特定字符结尾。Python提供了一个方便易用的方法——endswith()。 什么是Python endswith()方法&#xff1f; Python endswith()方法是用于检查字符串是否以特定子字符串结尾的…

【经验分享】一种高内聚低耦合的消息分发模块的设计与实现

【经验分享】一种高内聚低耦合的消息分发模块的设计与实现 又到了每天的open话题&#xff1a;【代码面对面】时刻&#xff0c;让我们一起在摸鱼中学习技术吧。今天的话题是嵌入式的消息分发模块&#xff0c;你会怎么设计和实现&#xff1f; 1 写在前面 老套路&#xff0c;我先…