LLM之RAG实战(一):使用Mistral-7b, LangChain, ChromaDB搭建自己的WEB聊天界面

一、RAG介绍

      如何使用没有被LLM训练过的数据来提高LLM性能?检索增强生成(RAG)是未来的发展方向,下面将解释一下它的含义和实际工作原理。

​       假设您有自己的数据集,例如来自公司的文本文档。如何让ChatGPT和其他LLM了解它并回答问题?

        这可以通过四个步骤轻松完成:

  1. Embedding:使用embedding模型对文档进行embedding操作,比如OpenAI的text-Embedding-ada-002或S-BERT(https://arxiv.org/abs/1908.10084)。将文档的句子或单词块转换为数字向量。就向量之间的距离而言,彼此相似的句子应该很近,而不同的句子应该离得更远;

  2. Vector Store:embedding文档之后就可以把它们存储在矢量存储中,比如ChromaDB、FAISS或Pinecone。矢量存储就像一个数据库,但顾名思义,它对矢量嵌入进行索引和存储,以实现快速检索和相似性搜索;

  3. Query:既然你的文档已经嵌入并存储,当你向LLM提出特定问题时,它会embedding你的查询,并在向量存储中找到余弦相似度最接近你问题的句子;

  4. Answering Your Question:一旦找到最接近的句子,它们就会被注入到Prompt中,就这样!LLM现在可以在没有经过任何再训练或微调的情况下回答有关数据的特定问题!

整体的架构,如下图所示:

PS:有关RAG的更多信息,请查看IBM高级研究科学家Marina Danilevsky的这段来自IBM的精彩视频,地址是:https://www.youtube.com/watch?v=T-D1OfcDW1M。

二、安装python环境以及相关的包

!pip install gradio --quiet!pip install xformer --quiet!pip install chromadb --quiet!pip install langchain --quiet!pip install accelerate --quiet!pip install transformers --quiet!pip install bitsandbytes --quiet!pip install unstructured --quiet!pip install sentence-transformers --quiet

三、导入相关包

import torchimport gradio as grfrom textwrap import fillfrom IPython.display import Markdown, displayfrom langchain.prompts.chat import (    ChatPromptTemplate,    HumanMessagePromptTemplate,    SystemMessagePromptTemplate,    )from langchain import PromptTemplatefrom langchain import HuggingFacePipelinefrom langchain.vectorstores import Chromafrom langchain.schema import AIMessage, HumanMessagefrom langchain.memory import ConversationBufferMemoryfrom langchain.embeddings import HuggingFaceEmbeddingsfrom langchain.text_splitter import RecursiveCharacterTextSplitterfrom langchain.document_loaders import UnstructuredMarkdownLoader, UnstructuredURLLoaderfrom langchain.chains import LLMChain, SimpleSequentialChain, RetrievalQA, ConversationalRetrievalChainfrom transformers import BitsAndBytesConfig, AutoModelForCausalLM, AutoTokenizer, GenerationConfig, pipelineimport warningswarnings.filterwarnings('ignore')

四、Mistral-7b模型介绍

       Mistral-7B是由Mistral AI开源的,在多个benchmark上超过LLaMA2,如下图所示:

      下面将使用Mistral AI开发的基础LLM Mistral-7b建立了一个文本生成Pipeline,对其进行量化、分词和生成参数进行配置:

  • quantiation_config=BitsAndBytesConfig(…):这里,使用BitsAndBytesConfig定义量化配置。量化是一种用于降低深度学习模型的内存和计算需求的技术,通常通过使用更少的比特(在我们的情况下为4比特)来表示模型参数;
  • tokenizer=AutoTokenizer.from_pretrained(…):这一行初始化Mistral-7b模型的tokenizer,允许您预处理输入到模型的文本数据;
  • model=AutoModelForCausalLM.from_pretrained(…):这初始化了用于因果语言建模的预训练语言Mistral-7b模型。该模型配置有各种参数,包括先前设置的量化配置;
  • generation_config=GenerationConfig.from_pretrained(…):为模型创建一个生成配置,指定各种与生成相关的设置,如令牌的最大数量、采样温度、top-p采样和重复惩罚;
  • pipeline=pipeline(…):最后,使用pipeline函数创建一个文本生成管道。这个管道是为文本生成而设置的,它将预先训练的模型、标记器和生成配置作为输入。它被配置为返回全文输出。
MODEL_NAME = "mistralai/Mistral-7B-Instruct-v0.1"quantization_config = BitsAndBytesConfig(    load_in_4bit=True,    bnb_4bit_compute_dtype=torch.float16,    bnb_4bit_quant_type="nf4",    bnb_4bit_use_double_quant=True,)tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, use_fast=True)tokenizer.pad_token = tokenizer.eos_tokenmodel = AutoModelForCausalLM.from_pretrained(    MODEL_NAME, torch_dtype=torch.float16,    trust_remote_code=True,    device_map="auto",    quantization_config=quantization_config)generation_config = GenerationConfig.from_pretrained(MODEL_NAME)generation_config.max_new_tokens = 1024generation_config.temperature = 0.0001generation_config.top_p = 0.95generation_config.do_sample = Truegeneration_config.repetition_penalty = 1.15pipeline = pipeline(    "text-generation",    model=model,    tokenizer=tokenizer,    return_full_text=True,    generation_config=generation_config,)

      HuggingFacePipeline是一个允许您在本地运行Hugging Face模型的类,它用于访问和利用Hugging Face Model Hub上托管的各种预先训练的ML模型。在我们的案例中,我们将在LangChain环境中使用它作为本地包装器与Hugging Face模型进行交互。然而,当使用HuggingFacePipeline时,建议安装xformer(https://github.com/facebookresearch/xformers),以实现更高效的内存注意力实现。这就是我们在上面安装它的原因!

llm = HuggingFacePipeline(    pipeline=pipeline,    )

       在将我们的基础LLM Mistral-7b连接到我们的私人数据之前。首先,让我们问一些一般性的问题。当然,它将根据在训练前获得的一般知识做出回应。

query = "Explain the difference between ChatGPT and open source LLMs in a couple of lines."result = llm(    query)display(Markdown(f"<b>{query}</b>"))display(Markdown(f"<p>{result}</p>"))

       看起来回答的不错!如果我们问它一个在预训练阶段没有遇到的问题,会发生什么?

query = "What is Hiberus GenIA Ecosystem?"result = llm(    query)display(Markdown(f"<b>{query}</b>"))display(Markdown(f"<p>{result}</p>"))

      这不是预期的答案。GenIA生态系统甚至比这更酷,这是因为Mistral-7b LLM在预训练期间从未见过任何关于GenIA生态的信息。我保证在接下来的章节中引导您获得正确答案。

五、Embedding模型

       在配置基础LLM之后,我们继续来配置embedding模型。正如您所知,每个文档都应该转换为embedding向量,以便使用用户的查询进行语义搜索,该查询也应该被embedding。为了实现这一点,我们将利用阿里巴巴大摩学院预训练并在Hugging Face上开源的embedding模型GTE(https://arxiv.org/abs/2308.03281)。值得注意的是,这个模型既免费又强大。为了完成我们的任务,我们将使用HuggingFaceEmbeddings类,这是一个本地管道包装器,用于与Hugging Face Hub上托管的GTE模型进行交互。

embeddings = HuggingFaceEmbeddings(    model_name="thenlper/gte-large",    model_kwargs={"device": "cuda"},    encode_kwargs={"normalize_embeddings": True},)

六、Prompt Template

       PromptTemplate通过结构化Prompt格式使模型按照用户期望的格式进行输出,模板可以包括指令、few-shot例子以及适合特定任务的特定上下文和问题。

template = """[INST] <>Act as a Machine Learning engineer who is teaching high school students.<>{text} [/INST]"""prompt = PromptTemplate(    input_variables=["text"],    template=template,)

我们来看一下效果:

query = "Explain what are Deep Neural Networks in 2-3 sentences"result = llm(prompt.format(text=query))display(Markdown(f"<b>{query}</b>"))display(Markdown(f"<p>{result}</p>"))

七、数据加载

数据加载流程,如下图所示:

    为了准确回答我们之前的问题(What is Hiberus GenIA Ecosystem?),我们必须将LLM与GenIA生态系统的信息联系起来。很幸运!有两个网页是理解GenIA生态系统的关键。

urls = [    "https://www.hiberus.com/expertos-ia-generativa-ld",    "https://www.hiberus.com/en/experts-generative-ai-ld"]loader = UnstructuredURLLoader(urls=urls)documents = loader.load()len(documents)# Output

       由于这两个文档数据量较大,以及超过了Mistral-7b大模型的上下文窗口大小,因此我们需要将文档按照1024个tokens大小进行切分,生成21个较小的chunks,并且为了保证上下文的连续性,chunk与chunk直接设置64个重叠tokens,代码如下:

text_splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=64)texts_chunks = text_splitter.split_documents(documents)len(texts_chunks)

八、数据注入

       对数据分块之后,我们将对分块数据进行embedding并存储到向量数据库Chromdb中

db = Chroma.from_documents(texts_chunks, embeddings, persist_directory="db")

       数据被添加索引之后,我们可以在Prompt模板中添加RAG模型赋予营销经理专家的角色!

       此外,为了将LLM与矢量数据库检索功能相结合,我们使用了关键的链接组件RetrievalQA,其中k=2。这种设置确保检索器输出两个相关的块,然后LLM在提出问题时使用这两个块来制定答案。

template = """[INST] <>Act as an Hiberus marketing manager expert. Use the following information to answer the question at the end.<>{context}{question} [/INST]"""prompt = PromptTemplate(template=template, input_variables=["context", "question"])qa_chain = RetrievalQA.from_chain_type(    llm=llm,    chain_type="stuff",    retriever=db.as_retriever(search_kwargs={"k": 2}),    return_source_documents=True,    chain_type_kwargs={"prompt": prompt},)

九、查询

执行完上述步骤,我们就可以进行查询了。

例子一:

query = "What is GenAI Ecosystem?"result_ = qa_chain(    query)result = result_["result"].strip()display(Markdown(f"<b>{query}</b>"))display(Markdown(f"<p>{result}</p>"))

例子二:

query = "Why Hiberus has created GenAI Ecosystem?"result_ = qa_chain(    query)result = result_["result"].strip()display(Markdown(f"<b>{query}</b>"))display(Markdown(f"<p>{result}</p>"))

      这两个问题的答案都符合预期,包括我们之前错过的那个问题。我们还可以输出LLM生成答案的源文档或参考文档。

result_["source_documents"]

十、问答

       为了实现问答功能,我们首先对Prompt模板进行一些调整。然后,我们使用ConversationBufferMemory将对话存储在内存中,然后稍后检索消息。最后,使用链接组件ConversationalRetrievalChain将我们的LLM Mistral-7b与矢量数据库和聊天历史相结合。问答系统整体架构,如下图所示:

custom_template = """You are an Hiberus Marketing Manager AI Assistant. Given thefollowing conversation and a follow up question, rephrase the follow up questionto be a standalone question. At the end of standalone question add this'Answer the question in English language.' If you do not know the answer reply with 'I am sorry, I dont have enough information'.Chat History:{chat_history}Follow Up Input: {question}Standalone question:"""CUSTOM_QUESTION_PROMPT = PromptTemplate.from_template(custom_template)memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)qa_chain = ConversationalRetrievalChain.from_llm(    llm=llm,    retriever=db.as_retriever(search_kwargs={"k": 2}),    memory=memory,    condense_question_prompt=CUSTOM_QUESTION_PROMPT,)

我们来测试一下问答功能:

query = "Who you are?"result_ = qa_chain({"question": query})result = result_["answer"].strip()display(Markdown(f"<b>{query}</b>"))display(Markdown(f"<p>{result}</p>"))

query = "What is GenIA Ecosystem?"result_ = qa_chain({"question": query})result = result_["answer"].strip()display(Markdown(f"<b>{query}</b>"))display(Markdown(f"<p>{result}</p>"))

      我们可以通过查看HumanMessages中的问题和AIMessages中的模型响应来获取聊天的历史记录。

memory.chat_memory.messages

十一、基于Gradio搭建问答UI界面

       我之前写过一篇一键部署Huggingface模型工具Gradio介绍过Gradio的具体使用,Gradio具有用户友好的网络界面,任何人都可以从任何地方访问!它的工作原理如下:我们设置了一个名为querying()的函数,它将查询作为主要输入,并使用一个名为history的名称巧妙的假参数来解决一个小问题。当你启动这个函数时,它会返回我们的超级明星模型Mistral-7b生成的响应。

def querying(query, history):  memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)  qa_chain = ConversationalRetrievalChain.from_llm(      llm=llm,      retriever=db.as_retriever(search_kwargs={"k": 2}),      memory=memory,      condense_question_prompt=CUSTOM_QUESTION_PROMPT,  )  result = qa_chain({"question": query})  return result["answer"].strip()

启动Gradio聊天界面

iface = gr.ChatInterface(    fn = querying,    chatbot=gr.Chatbot(height=600),    textbox=gr.Textbox(placeholder="What is GenAI Ecosystem?", container=False, scale=7),    title="HiberusBot",    theme="soft",    examples=["Why Hiberus has created GenAI Ecosystem?",              "What is GenAI Ecosystem?"],    cache_examples=True,    retry_btn="Repetir",    undo_btn="Deshacer",    clear_btn="Borrar",    submit_btn="Enviar"    )iface.launch(share=True)

最终展示的聊天界面,如下图所示:

参考文献:

[1] https://medium.com/@zekaouinoureddine/ask-your-web-pages-using-mistral-7b-langchain-f976e1e151ca

[2] https://arxiv.org/abs/2005.11401

[3] https://arxiv.org/abs/2310.06825

[4] https://arxiv.org/abs/2308.03281

[5] https://www.youtube.com/watch?v=PuU_qf23u_8

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/215607.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

中级工程师评审条件:如何成为一名合格的中级工程师

作为一名工程师&#xff0c;不仅需要具备扎实的技术基础和实践能力&#xff0c;还需要通过评审来证明自己的能力水平。在成为一名合格的中级工程师之前&#xff0c;你需要满足一系列评审条件。甘建二今天将详细介绍中级工程师评审的要求和标准&#xff0c;帮助你成为更优秀的工…

基于java技术的电子商务支撑平台

摘 要 随着网络技术的发展&#xff0c;Internet变成了一种处理日常事务的交互式的环境。互联网上开展各种服务已经成为许多企业和部门的急切需求。Web的普遍使用从根本上改变了人们的生活方式、工作方式&#xff0c;也改变了企业的经营方式和服务方式。人们可以足不出户办理各…

BLIP和BLIP2

1.BLIP BLIP的第一个共享是将图像文本理解与图像文本生成任务进行了统一&#xff0c;形成了多模态统一模型&#xff0c;模型在ITC任务上的效果也比CLIP更好。 1.1任务 ITC&#xff1a;就是CLIP中的图像文本对比学习任务 ITM&#xff1a;针对ITC任务中匹配不正确的样本&#…

大数据|计算机毕业设计——基于Django协同过滤算法的房源可视化分析推荐系统的设计与实现

大数据|计算机毕业设计——基于Django协同过滤算法的房源可视化分析推荐系统的设计与实现 技术栈&#xff1a;大数据爬虫/机器学习学习算法/数据分析与挖掘/大数据可视化/Django框架/Mysql数据库 本项目基于 Django框架开发的房屋可视化分析推荐系统。这个系统结合了大数据爬…

3D旋转tab图

上图 代码 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>3D旋转tab图</title><style>* {margin: 0;padding: 0;}body {height: 100vh;background: linear-gradient(to top, #29323c, #…

办公室状态公告系统保护涉密和高级领导办公室

天纵办公室状态公告系统通过在办公室外设置一个公告屏的方式告诉来访者办公室目前的使用状态&#xff0c;以防来访者盲目敲门影响办公室内领导的工作。主要用于高级领导办公室、涉密办公室等重要场所。 天纵办公室状态公告系统可能通过触摸电脑、平板或机械按钮等方式控制室外公…

有哪些电话销售的经验值得分享?

有哪些电话销售的经验值得分享&#xff1f; 电话销售&#xff0c;这是一项挑战与机遇并存的行业。它不仅要求你具备良好的沟通技巧和专业知识&#xff0c;更需要你有足够的耐心和热情。以下是一些值得分享的电话销售经验&#xff0c;帮助你更好地开展销售工作。 1. 精心准备。…

深度学习——第3章 Python程序设计语言(3.3 Python数据类型)

3.3 Python数据类型 目录 1. Python数值数据类型 2. Python库的导入和使用 3. Python序列数据类型 4. Python组合数据类型 计算机能处理各种类型的数据&#xff0c;包括数值、文本等&#xff0c;不同的数据属于不同的数据类型&#xff0c;有不同的存储方式&#xff0c;支持…

AndroidStudio - 新版本 Logcat 使用详解

最近这俩天正好有时间给自己做一下减法&#xff0c;忘记是去年还是今年&#xff0c;在升级 AndroidStudio 后使用 Logcat查看日志的方式也发生了一些变化&#xff0c;虽然一直在使用&#xff0c;但每当看到之前还未关闭 Logcat 命令行工具额昂也&#xff0c;就感觉可能还存在知…

广州找工作用什么软件

广州吉鹿力招聘网是一个很好的广州找工作网站&#xff0c;它提供了丰富的招聘信息&#xff0c;并且有专业的招聘团队负责筛选简历。广州吉鹿力招聘网在广州市的招聘市场上有着较高的知名度和影响力&#xff0c;用户可以通过广州吉鹿力招聘网了解最新的招聘信息&#xff0c;找到…

Android studio版本对用的gradle版本和插件版本(注意事项)

简介 Android Studio 构建系统以 Gradle 为基础&#xff0c;并且 Android Gradle 插件添加了几项专用于构建 Android 应用的功能。虽然 Android 插件通常会与 Android Studio 的更新步调保持一致&#xff0c;但插件&#xff08;以及 Gradle 系统的其余部分&#xff09;可独立于…

行业分析:2023年智能自动化药房市场现状及发展前景

医药电商是近些年的行业风口&#xff0c;尤其是随着大型互联网平台的介入和互联网医院的兴起&#xff0c;医药电商步入高速增长期。第三方交易服务平台在医药电商的销售额占比为58%&#xff0c;而到了2020年下降至40%。在终端销售额中&#xff0c;大型医院占据了59.7%的份额&am…

你不得不知道的工业镜头使用中的常见问题

镜头的基本功能就是实现光束变换&#xff08;调制&#xff09;&#xff0c;在机器视觉系统中&#xff0c;工业镜头的主要作用是将目标成像在图像传感器的光敏面上。工业镜头是机器视觉系统设计的重要环节。在实际应用过程中&#xff0c;会遇到以下常见问题。 1、Q&#xff1a;…

【EI会议征稿】第三届图像,信号处理与模式识别国际学术会议(ISPP 2024)

第三届图像&#xff0c;信号处理与模式识别国际学术会议&#xff08;ISPP 2024) 2024 3rd International Conference on Image, Signal Processing and Pattern Recognition&#xff08;ISPP 2024&#xff09; 第三届图像&#xff0c;信号处理与模式识别国际学术会议&#xf…

皮具生产ERP方案有哪些?皮具生产ERP哪个比较好

我们的生活当中有很多类型的皮具产品&#xff0c;这些商品有多样化的销售渠道&#xff0c;灵活的促销策略和价格策略&#xff0c;同时还有着复杂多样的用料、配方、生产过程等&#xff0c;而各类经营业务数据的统计分析工作却比较繁杂&#xff0c;人工录入数据容易出现错误。 …

Python使用爬虫ip爬取动态网页

写爬虫很难&#xff1f;在我看来&#xff0c;写爬虫需要具备一定的编程基础和网络知识&#xff0c;但并不需要非常高深的技术。在学习爬虫的过程中&#xff0c;我发现最重要的是掌握好两个点&#xff1a;一是如何分析网页结构&#xff0c;二是如何处理数据。对于第一个点&#…

深入理解GMP模型

1、GMP模型的设计思想 1&#xff09;、GMP模型 GMP分别代表&#xff1a; G&#xff1a;goroutine&#xff0c;Go协程&#xff0c;是参与调度与执行的最小单位M&#xff1a;machine&#xff0c;系统级线程P&#xff1a;processor&#xff0c;包含了运行goroutine的资源&#…

计算机网络安全问题分析与防护措施研究

计算机网络安全问题分析与防护措施研究 【摘要】在信息技术快速发展的今天&#xff0c;网络对于人类的生活方式影响显著增强&#xff0c;网络技术快速地在社会各个领域普及&#xff0c;使得计算机网络的安全成为一个亟待解决的问题。如何能够保证网络的快速健康发展己成为研究…

HT7183 高功率异步升压转换器 中文资料

HT7183是一款高功率异步升压转换器&#xff0c;集成120mΩ功率开关管&#xff0c;为便携式系统提供G效的小尺寸处理方案。HT7183具有2.6V至5.5V输入电压范围&#xff0c;可为各类不同供电的应用提供支持。HT7183具备3A开关电流能力&#xff0c;并且能够提供高达16V的输出电压。…

开会做笔记的时候用什么软件比较好?

在工作生涯中&#xff0c;会经历很多大大小小的会议&#xff0c;而如何快速准确记录下会议上重要的内容&#xff0c;成了很多上班族的必修课。在会上做笔记&#xff0c;选择什么样的工具才能事半功倍&#xff0c;成了一个值得深思的问题。而经过一段时间的测评后&#xff0c;我…