YOLOv8改进 | 2023 | SCConv空间和通道重构卷积(精细化检测,又轻量又提点)

一、本文介绍

本文给大家带来的改进内容是SCConv,即空间和通道重构卷积,是一种发布于2023.9月份的一个新的改进机制。它的核心创新在于能够同时处理图像的空间(形状、结构)和通道色彩、深度)信息,这样的处理方式使得SCConv在分析图像时更加精细和高效。这种技术不仅适用于复杂场景的图像处理,还能在普通的对象检测任务中提供更高的精确度(亲测在小目标检测和正常的物体检测中都有效提点)。SCConv的这种能力,特别是在处理大量数据和复杂图像时的优势。本文通过先介绍SCConv的基本网络结构和原理当大家对该卷积有一个大概的了解,然后教大家如何将该卷积添加到自己的网络结构中(值得一提的是该卷积的GFLOPs降低了0.3左右适合轻量化的读者) 

适用检测目标:所有的目标检测均有一定的提点

推荐指数:⭐⭐⭐⭐⭐

专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备    

训练结果对比图-> 

因为资源有限我发的文章都要做对比实验所以本次实验我只用了一百张图片检测的是火灾训练了一百个epoch,该结果只能展示出该机制有效,但是并不能产生决定性结果,因为具体的效果还要看你的数据集和实验环境所影响(这次找的数据集质量好像不太好效果波动很大)。  

大家可以看出mAP(50)提高了大概0.6左右(值得一提的是该卷积的GFLOPs降低了0.3左右适合轻量化的读者) 

44308abda9734a91ad908faca9a7fd5a.png

目录

一、本文介绍

二、网络结构讲解

2.1 SCConv的主要思想

2.2 空间重构单元(SRU)

2.3 通道重构单元(CRU)

三、SCConv代码

3.1 SCConv本地代码

3.2 在SCConv外层套用函数

3.3 修改了SCConv的C2f和Bottleneck模块

四、手把手教你添加SCConv和C2f_SCConv模块

4.1 SCConv的添加教程

4.2 SCConv的yaml文件和训练截图

4.2.1 SCConv的yaml文件

4.2.2 SCConv的训练过程截图 

五、SCConv可添加的位置

5.1 推荐SCConv可添加的位置 

5.2 图示SCConv可添加的位置 

六、本文总结


 二、网络结构讲解

51a53656d50a4c3d8715d8357595201d.png

论文地址:官方论文地址

代码地址:官方代码地址

107067b614d447b58528d6c435965dd2.png


2.1 SCConv的主要思想

SCConv(空间和通道重构卷积的高效卷积模块,以减少卷积神经网络(CNN)中的空间和通道冗余。SCConv旨在通过优化特征提取过程,减少计算资源消耗并提高网络性能。该模块包括两个单元:

1.空间重构单元(SRU):SRU通过分离和重构方法来减少空间冗余。

2.通道重构单元(CRU):CRU采用分割-变换-融合策略来减少通道冗余。

下面是SCConv的结构示意图->

c0aa4cd5b2f24a59b39a078abc29e91d.png

下面我将分别解释这两个单元->


2.2 空间重构单元(SRU)

空间重构单元(SRU)是SCConv模块的一部分,负责减少特征在空间维度上的冗余。SRU接收输入特征,并通过以下步骤处理:

1. 组归一化(Group Normalization):首先对输入特征进行归一化,以减少不同特征图之间的尺度差异。
2. 权重生成:通过应用归一化和激活函数,如Sigmoid,从归一化的特征图中生成权重。
3. 特征分离:根据生成的权重,对输入特征进行分离,形成多个子特征集。
4. 特征重构:最后,这些分离出来的特征集经过变换和重组,产生空间精炼的特征输出,以便进一步处理。

6c0b287f19104d6cad1a886d2fd587b9.png

上图展示了空间重构单元(SRU)的架构。SRU的工作流程如下:

1. 输入特征X:首先进行组归一化(GN)处理。
2. 分离:通过一系列的权重 eq?W_%7B1%7D, eq?W_%7B2%7D, ..., eq?W_%7BC%7D对特征进行加权,这些权重是通过输入特征的通道eq?%5Cgamma_1%2C%20%5Cgamma_2%2C%20...%2C%20%5Cgamma_c 经过归一化和非线性激活函数(如Sigmoid)计算得到的。
3. 重构:加权后的特征被分割成两个部分 eq?X_%7BW%7D%5E%7B1%7Deq?X_%7BW%7D%5E%7B2%7D,然后这两部分各自经过变换,最终通过加法和拼接操作重构,得到空间精炼特征eq?X_%7BW%7D

总结:这个单元的设计目的是为了减少输入特征的空间冗余,从而提高卷积神经网络处理特征的效率。


2.3 通道重构单元(CRU)

通道重构单元(CRU)是SCConv模块的一部分,旨在减少卷积神经网络特征的通道冗余。CRU对经过空间重构单元(SRU)处理后的特征进一步操作,通过以下步骤减少通道冗余:

f3d201d671a64fcbbea33a99438fb3d8.png

上图详细展示了通道重构单元(CRU)的架构,该单元从空间精炼特征 \( X^W \) 开始进行处理。CRU的工作流程包括以下几个步骤:

1. 分割(Split):特征 eq?X%5E%7BW%7D 被分割成两部分,通过不同比例的eq?%5Calphaeq?%281-%5Calpha%29 路径进行不同的1x1卷积处理。
2. 变换(Transform):通过全局卷积(GWC)和点卷积(PWC)进一步变换这两部分特征。
3. 融合(Fuse):两个变换后的特征 eq?Y_%7B1%7Deq?Y_%7B2%7D 经过池化和SoftMax加权融合,形成最终的通道精炼特征 eq?Y

总结:这种结构旨在通过细致地处理各个通道,减少不必要的信息,并提高网络的整体性能和效率。通过这一过程,CRU有效地提高了特征的表征效率,同时减少了模型的参数数量和计算成本。


三、SCConv代码

3.1 SCConv核心代码

该代码为SCConv的本体,使用方式请看章节四。

import torch
import torch.nn.functional as F
import torch.nn as nn


class GroupBatchnorm2d(nn.Module):
    def __init__(self, c_num: int,
                 group_num: int = 16,
                 eps: float = 1e-10
                 ):
        super(GroupBatchnorm2d, self).__init__()
        assert c_num >= group_num
        self.group_num = group_num
        self.weight = nn.Parameter(torch.randn(c_num, 1, 1))
        self.bias = nn.Parameter(torch.zeros(c_num, 1, 1))
        self.eps = eps

    def forward(self, x):
        N, C, H, W = x.size()
        x = x.view(N, self.group_num, -1)
        mean = x.mean(dim=2, keepdim=True)
        std = x.std(dim=2, keepdim=True)
        x = (x - mean) / (std + self.eps)
        x = x.view(N, C, H, W)
        return x * self.weight + self.bias


class SRU(nn.Module):
    def __init__(self,
                 oup_channels: int,
                 group_num: int = 16,
                 gate_treshold: float = 0.5,
                 torch_gn: bool = True
                 ):
        super().__init__()

        self.gn = nn.GroupNorm(num_channels=oup_channels, num_groups=group_num) if torch_gn else GroupBatchnorm2d(
            c_num=oup_channels, group_num=group_num)
        self.gate_treshold = gate_treshold
        self.sigomid = nn.Sigmoid()

    def forward(self, x):
        gn_x = self.gn(x)
        w_gamma = self.gn.weight / sum(self.gn.weight)
        w_gamma = w_gamma.view(1, -1, 1, 1)
        reweigts = self.sigomid(gn_x * w_gamma)
        # Gate
        w1 = torch.where(reweigts > self.gate_treshold, torch.ones_like(reweigts), reweigts)  # 大于门限值的设为1,否则保留原值
        w2 = torch.where(reweigts > self.gate_treshold, torch.zeros_like(reweigts), reweigts)  # 大于门限值的设为0,否则保留原值
        x_1 = w1 * x
        x_2 = w2 * x
        y = self.reconstruct(x_1, x_2)
        return y

    def reconstruct(self, x_1, x_2):
        x_11, x_12 = torch.split(x_1, x_1.size(1) // 2, dim=1)
        x_21, x_22 = torch.split(x_2, x_2.size(1) // 2, dim=1)
        return torch.cat([x_11 + x_22, x_12 + x_21], dim=1)


class CRU(nn.Module):
    '''
    alpha: 0<alpha<1
    '''

    def __init__(self,
                 op_channel: int,
                 alpha: float = 1 / 2,
                 squeeze_radio: int = 2,
                 group_size: int = 2,
                 group_kernel_size: int = 3,
                 ):
        super().__init__()
        self.up_channel = up_channel = int(alpha * op_channel)
        self.low_channel = low_channel = op_channel - up_channel
        self.squeeze1 = nn.Conv2d(up_channel, up_channel // squeeze_radio, kernel_size=1, bias=False)
        self.squeeze2 = nn.Conv2d(low_channel, low_channel // squeeze_radio, kernel_size=1, bias=False)
        # up
        self.GWC = nn.Conv2d(up_channel // squeeze_radio, op_channel, kernel_size=group_kernel_size, stride=1,
                             padding=group_kernel_size // 2, groups=group_size)
        self.PWC1 = nn.Conv2d(up_channel // squeeze_radio, op_channel, kernel_size=1, bias=False)
        # low
        self.PWC2 = nn.Conv2d(low_channel // squeeze_radio, op_channel - low_channel // squeeze_radio, kernel_size=1,
                              bias=False)
        self.advavg = nn.AdaptiveAvgPool2d(1)

    def forward(self, x):
        # Split
        up, low = torch.split(x, [self.up_channel, self.low_channel], dim=1)
        up, low = self.squeeze1(up), self.squeeze2(low)
        # Transform
        Y1 = self.GWC(up) + self.PWC1(up)
        Y2 = torch.cat([self.PWC2(low), low], dim=1)
        # Fuse
        out = torch.cat([Y1, Y2], dim=1)
        out = F.softmax(self.advavg(out), dim=1) * out
        out1, out2 = torch.split(out, out.size(1) // 2, dim=1)
        return out1 + out2


class ScConv(nn.Module):
    def __init__(self,
                 op_channel: int,
                 group_num: int = 4,
                 gate_treshold: float = 0.5,
                 alpha: float = 1 / 2,
                 squeeze_radio: int = 2,
                 group_size: int = 2,
                 group_kernel_size: int = 3,
                 ):
        super().__init__()
        self.SRU = SRU(op_channel,
                       group_num=group_num,
                       gate_treshold=gate_treshold)
        self.CRU = CRU(op_channel,
                       alpha=alpha,
                       squeeze_radio=squeeze_radio,
                       group_size=group_size,
                       group_kernel_size=group_kernel_size)

    def forward(self, x):
        x = self.SRU(x)
        x = self.CRU(x)
        return x


if __name__ == '__main__':
    x = torch.randn(1, 32, 16, 16)
    model = ScConv(32)
    print(model(x).shape)


3.2 在SCConv外层套用函数代码

因为以上的代码不能够直接使用在我们的YOLOv8中会报错而且参数对不上,我对其外层嵌套了一个模块。 

class SCConv_yolov8(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, g=1, dilation=1):
        super().__init__()
        self.conv = Conv(in_channels, out_channels, k=1)

        self.RFAConv = ScConv(out_channels)

        self.bn = nn.BatchNorm2d(out_channels)

        self.gelu = nn.GELU()

    def forward(self, x):
        x = self.conv(x)

        x = self.RFAConv(x)

        x = self.gelu(self.bn(x))
        return x


3.3 修改了SCConv的C2f和Bottleneck模块

class Bottleneck_SCConv(nn.Module):
    """Standard bottleneck."""

    def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):
        """Initializes a bottleneck module with given input/output channels, shortcut option, group, kernels, and
        expansion.
        """
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, k[0], 1)
        self.cv2 = SCConv_yolov8(c_, c2, k[1], 1, g=g)
        self.add = shortcut and c1 == c2

    def forward(self, x):
        """'forward()' applies the YOLO FPN to input data."""
        return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))


class C2f_SCConv(nn.Module):
    """Faster Implementation of CSP Bottleneck with 2 convolutions."""
    def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):
        """Initialize CSP bottleneck layer with two convolutions with arguments ch_in, ch_out, number, shortcut, groups,
        expansion.
        """
        super().__init__()
        self.c = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, 2 * self.c, 1, 1)
        self.cv2 = Conv((2 + n) * self.c, c2, 1)  # optional act=FReLU(c2)
        self.m = nn.ModuleList(Bottleneck_SCConv(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))

    def forward(self, x):
        """Forward pass through C2f layer."""
        x = self.cv1(x)
        x = x.chunk(2, 1)
        y = list(x)
        # y = list(self.cv1(x).chunk(2, 1))
        y.extend(m(y[-1]) for m in self.m)
        return self.cv2(torch.cat(y, 1))

    def forward_split(self, x):
        """Forward pass using split() instead of chunk()."""
        y = list(self.cv1(x).split((self.c, self.c), 1))
        y.extend(m(y[-1]) for m in self.m)
        return self.cv2(torch.cat(y, 1))


四、手把手教你添加SCConv和C2f_SCConv模块

4.1 SCConv的添加教程

添加教程这里不再重复介绍、因为专栏内容有许多,添加过程又需要截特别图片会导致文章大家读者也不通顺如果你已经会添加注意力机制了,可以跳过本章节,如果你还不会,大家可以看我下面的文章,里面详细的介绍了拿到一个任意机制(C2f、Conv、Bottleneck、Loss、DetectHead)如何添加到你的网络结构中去。

这个卷积也可以放在C2f和Bottleneck中进行使用可以即插即用,个人觉得放在Bottleneck中效果比较好。

添加教程->YOLOv8改进 | 如何在网络结构中添加注意力机制、C2f、卷积、Neck、检测头


4.2 SCConv的yaml文件和训练截图

4.2.1 SCConv的yaml文件

下面的配置文件为我修改的SCConv的位置。

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 9


# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 12

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f_SCConv, [256]]  # 15 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f_SCConv, [512]]  # 18 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f_SCConv, [1024]]  # 21 (P5/32-large)

  - [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)


4.2.2 SCConv的训练过程截图 

下面是添加了SCConv的训练截图。

下面的是将SCConv机制添加到了C2f和Bottleneck。

(最近有人说我改的代码是没有发全的,我不知道这群人是怎么说出这种话的,希望大家如果用我的代码成功的可以在评论区支持一下,我也好发更多的改进毕竟免费给大家看。同时有问题皆可在评论区留言我看到都会回复) 

bffb59f35cec47e5ae19b71e10294b4b.png​​​


五、SCConv可添加的位置

5.1 推荐SCConv可添加的位置 

SCConv是一种即插即用的模块,其可以添加的位置有很多,添加的位置不同效果也不同,所以我下面推荐几个添加的位,置大家可以进行参考,当然不一定要按照我推荐的地方添加。

  1. 残差连接中:在残差网络的残差连接中加入SCConv

  2. Neck部分:YOLOv8的Neck部分负责特征融合,这里添加修改后的C2f_SCConv可以帮助模型更有效地融合不同层次的特征。

  3. 检测头中的卷积:在最终的输出层前加入SCConv可以使模型在做出最终预测之前,更加集中注意力于最关键的特征。

文字大家可能看我描述不太懂,大家可以看下面的网络结构图中我进行了标注。


5.2 图示SCConv可添加的位置 

2949694815404620bdfb5875286c8e73.png​​​


六、本文总结

到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv8改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,目前本专栏免费阅读(暂时,大家尽早关注不迷路~),如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~

专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备

3d51a0611af1442f833362eaf18fbae2.gif

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/211825.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

计算机组成原理笔记——存储器(静态RAM和动态RAM的区别,动态RAM的刷新, ROM……)

■ 随机存取存储器 ■ 1.随机存取存储器&#xff1a;按存储信息的原理不同分为&#xff1a;静态RAM和动态RAM 2.静态RAM&#xff08;SRAM&#xff09;&#xff1a;用触发器工作原理存储信息&#xff0c;但电源掉电时&#xff0c;存储信息会丢失具有易失性。 3.存储器的基本单元…

代码随想录算法训练营第三十四天|62.不同路径,63. 不同路径 II

62. 不同路径 - 力扣&#xff08;LeetCode&#xff09; 一个机器人位于一个 m x n 网格的左上角 &#xff08;起始点在下图中标记为 “Start” &#xff09;。 机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角&#xff08;在下图中标记为 “Finish” &#…

Kubernetes技术与架构-策略

Kubernetes集群提供系统支持的策略&#xff0c;也提供开放接口给第三方定义的策略&#xff0c;这些策略用于可定义的配置文件或者Kubernetes集群的运行时环境&#xff0c;其中包括进程ID数量的申请与限制策略&#xff0c;服务器节点Node内的进程ID的数量限制策略&#xff0c;Po…

PyQt6 QCheckBox复选框按钮控件

​锋哥原创的PyQt6视频教程&#xff1a; 2024版 PyQt6 Python桌面开发 视频教程(无废话版) 玩命更新中~_哔哩哔哩_bilibili2024版 PyQt6 Python桌面开发 视频教程(无废话版) 玩命更新中~共计33条视频&#xff0c;包括&#xff1a;2024版 PyQt6 Python桌面开发 视频教程(无废话…

深入了解c语言中的结构体

介绍&#xff1a; 在C语言中&#xff0c;结构体是一种用户自定义的数据类型&#xff0c;它允许我们将不同类型的数据组合在一起&#xff0c;形成一个更为复杂的数据结构。结构体可以用来表示现实世界中的实体&#xff0c;如人员、学生、图书等。本篇博客将介绍结构体的基本概念…

iceoryx(冰羚)-进程间消息同步

iceoryx进程间消息同步 iceoryx进程间消息同步&#xff0c;是用socket或管道实现的,定义在iceoryx\iceoryx_posh\include\iceoryx_posh\internal\runtime\ipc_interface_base.hpp namespace platform { #if defined(_WIN32) using IoxIpcChannelType iox::posix::NamedPipe; …

Linux下为可执行文件添加图标

Ubuntu 18.04上使用Qt5.14.2创建一个简单的Qt Widgets项目test&#xff0c;添加2个Push Button按钮&#xff0c;点击分别获取github和csdn地址&#xff0c;在mainwindow.cpp中添加的代码如下: #include "mainwindow.h" #include "ui_mainwindow.h" #inclu…

Linux 互斥锁 读写锁 条件变量 信号量 (备查)

线程同步 1&#xff09;所谓的同步并不是多个线程同时对内存进行访问&#xff0c;而是按照先后顺序依次进行的。 2&#xff09;如没有对线程进行同步处理&#xff0c;会导致多个线程访问共享资源出现数据混乱的问题。 3&#xff09;所谓共享资源就是多个线程共同访问的变量&…

javaweb校车校园车辆管理系统springboot+jsp

结构设计&#xff1a;总体采用B/S结构设计模式 (1)用户登录模块&#xff1a;用户通过手动登录&#xff0c;检测是否是校内人员的车辆。 (2)用户车辆信息编辑、上传、模块&#xff1a;通过上传车辆入场信息的操作权限&#xff0c;以用户的名义发布资料上传至校园停车场系统中。…

可视化数据库管理客户端:Adminer

简介&#xff1a;Adminer&#xff08;前身为phpMinAdmin&#xff09;是一个用PHP编写的功能齐全的数据库管理工具。与phpMyAdmin相反&#xff0c;它由一个可以部署到目标服务器的文件组成。Adminer可用于MySQL、PostgreSQL、SQLite、MS SQL、Oracle、Firebird、SimpleDB、Elast…

Java+SSM+MySQL基于微信的在线协同办公小程序(附源码 调试 文档)

基于微信的在线协同办公小程序 一、引言二、系统设计三、技术架构四、管理员功能设计五、员工功能设计六、系统实现七、界面展示八、源码获取 一、引言 随着科技的飞速发展&#xff0c;移动互联网已经深入到我们生活的各个角落。在这个信息时代&#xff0c;微信作为全球最大的…

头歌JUnit单元测试相关实验入门

一、入门实验 1.1第一个Junit测试程序 任务描述 请学员写一个名为testSub()的测试函数&#xff0c;来测试给定的减法函数是否正确。 相关知识 Junit编写原则 1、简化测试的编写&#xff0c;这种简化包括测试框架的学习和实际测试单元的编写。 2、测试单元保持持久性。 3、利用…

【Python】Python给工作减负-读Excel文件生成xml文件

目录 ​前言 正文 1.Python基础学习 2.Python读取Excel表格 2.1安装xlrd模块 2.2使用介绍 2.2.1常用单元格中的数据类型 2.2.2 导入模块 2.2.3打开Excel文件读取数据 2.2.4常用函数 2.2.5代码测试 2.2.6 Python操作Excel官方网址 3.Python创建xml文件 3.1 xml语法…

计算机组成原理,硬件组成,存储器,控制器,控制器的任务, 运算器,中央处理器CPU,主存

计算机组成原理 课程需求 前导课程&#xff1a; 后继课程 汇编 操作系统 数逻 组成 系统结构 数电 微机原理 课程结构 计算机特性 1 从外部角度来看计算机的特性 快速 通用 准确 逻辑 2从外部特性与内部特性的关系 计算机组成 一 硬件组成 运算器 主要功能是进行算术…

强化学习(一)——基本概念及DQN

1 基本概念 智能体 agent &#xff0c;做动作的主体&#xff0c;&#xff08;大模型中的AI agent&#xff09; 环境 environment&#xff1a;与智能体交互的对象 状态 state &#xff1b;当前所处状态&#xff0c;如围棋棋局 动作 action&#xff1a;执行的动作&#xff0c;…

CRM系统是怎样帮助销售流程自动化的?

销售业绩是衡量企业经营的重要指标&#xff0c;也是销售人员一直要达成的目标。销售业绩能否提高取决于销售人员的能力、客户服务水平&#xff0c;还需要借助有效的工具。CRM系统就是这样的一款软件。企业如何提高销售业绩&#xff1f;不妨试试CRM销售流程自动化。 CRM如何实现…

【从删库到跑路 | MySQL总结篇】事务详细介绍

个人主页&#xff1a;兜里有颗棉花糖 欢迎 点赞&#x1f44d; 收藏✨ 留言✉ 加关注&#x1f493;本文由 兜里有颗棉花糖 原创 收录于专栏【MySQL学习专栏】&#x1f388; 本专栏旨在分享学习MySQL的一点学习心得&#xff0c;欢迎大家在评论区讨论&#x1f48c; 目录 一、事务…

JavaScript 数据结构

JavaScript 数据结构 目录 JavaScript 数据结构 一、标识符 二、关键字 三、常量 四、变量 每一种计算机编程语言都有自己的数据结构&#xff0c;JavaScript脚本语言的数据结构包括&#xff1a;标识符、常量、变量、保留字等。 一、标识符 标识符&#xff0c;说白了&…

使用gcloud SDK 管理和部署 Cloud run service

查看cloud run 上的service 列表&#xff1a; gcloud run services list > gcloud run services listSERVICE REGION URL LAST DEPLOYED BY LAST DEPL…

【QT】Windows环境下,cmake引入QML

这里使用的QT库为5.7版本。 1、添加环境变量 QT库根目录环境变量 QTDIR QT库平台插件环境变量 QT_PLUGIN_PATH QML支持环境变量 QML2_IMPORT_PATH &#xff08;该环境变量仅在需要使用QML时添加&#xff09; QT库动态库环境变量&#xff0c;bin目录下包含了QT程序运行所需的dl…