TCP连接为什么是三次握手,而不是两次和四次

答案

  • 阻止重复的历史连接
  • 同步初始序列号
  • 避免资源浪费

原因

阻止重复的历史连接(首要原因)

考虑这样一种情况:


客户端现在要给服务端建立连接,向服务端发送了一个SYN报文段(第一次握手),以表示请求服务端连接,但是该SYN报文段由于网络拥塞原因阻塞在了网络中迟迟没有到达服务端,故而在触发超时重传机制后,客户端又发生了一个新的SYN报文段给服务端以表示请求连接。

假如过了一段时间之后,旧的SYN报文段与新的SYN报文段都到达了服务端,此时服务端该如何区分新旧报文段,又或者说服务端该如何拒绝旧的SYN报文段而只响应新的SYN报文段呢(因为对新的连接请求进行响应才是客户端需要的,但是服务端该如何拒绝旧的响应)

接下来我们来针对这种情况进行分析,来说明三次握手为什么可以拒绝旧的历史请求(也就是上述所说的,旧的SYN报文段)

第一种情况

超时后client收到了旧的SYN报文段响应,但是新的SYN报文段已经发送了,此时client收到旧的SYN报文段响应,发现与期望的不对应(client期望收到新的SYN报文段ack,而不是旧的ack),于是向server发生一个RST报文段,目的是告诉server旧的SYN报文是错的,让server释放掉它

第二种情况

超时后,新旧SYN报文段都到达了server端,且client端并未收到server端的回复

此时由于第三次握手的存在,server端并不立即分配资源,而是发现新旧两个SYN报文段的seq序号是失序的(旧的seq是90,而新的seq是100),由于tcp在面对失序报文段情况下,只对连续收到的最新序号进行回应,因此server端将回复client一个序号为91的ack,同样client端收到这个ack序号时发现跟自己期望的不一样(期望的是101),于是给server发送一个RST,让server释放掉序号为91的SYN报文段。

由上可见,正是由于第三次握手的存在,使得sever端在收到旧的历史连接之后,得以不立即分配资源,且可以等待client的回复以发现这是一个旧的SYN,从而拒绝掉它。

反过来,假如只有两次握手,那么server端将无法得知client发送过来的两次连接请求到底哪一个才是client需要的。

同步初始序列号

TCP 协议的通信双方, 都必须维护一个「序列号」, 序列号是可靠传输的一个关键因素,它的作用:

  • 接收方可以去除重复的数据
  • 接收方可以根据数据包的序列号按序接收
  • 可以标识发送出去的数据包中, 哪些是已经被对方收到的(通过 ACK 报文中的序列号知道);

可见,序列号在 TCP 连接中占据着非常重要的作用,所以当客户端发送携带「初始序列号」的 SYN 报文的时候,需要服务端回一个 ACK 应答报文,表示客户端的 SYN 报文已被服务端成功接收,那当服务端发送「初始序列号」给客户端的时候,依然也要得到客户端的应答回应这样一来一回,才能确保双方的初始序列号能被可靠的同步。

避免资源浪费

如果只有两次握手,当客户端发生的 SYN 报文在网络中阻塞,客户端没有接收到 ACK 报文,就会重新发送 SYN ,由于没有第三次握手,服务端不清楚客户端是否收到了自己回复的 ACK 报文,所以服务端每收到一个 SYN 就只能先主动建立一个连接,这会造成什么情况呢?

如果客户端发送的 SYN 报文在网络中阻塞了,重复发送多次 SYN 报文,那么服务端在收到请求后就会建立多个冗余的无效链接,造成不必要的资源浪费。

为什么不是四次握手

上述提到,三次握手可以同步双方的初始序号,其实四次握手也可以,但是在四次握手的过程可以完全优化为三次握手,如下图所示,因此就成了三次握手

参考:

4.1 TCP 三次握手与四次挥手面试题 | 小林coding (xiaolincoding.com)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/211787.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Mininet学习记录(常用命令+创建网络拓扑+OpenDaylight显示拓扑结构)

目录 1.Mininet简介2.Mininet常用命令2.1创建网络拓扑常用参数2.2常用的内部交换命令 3.创建网络拓扑的三种方式3.1通过命令行创建3.2通过miniedit可视化界面创建3.3通过python脚本创建 4.问题总结 1.Mininet简介 Mininet 是由一些虚拟的终端节点 (end-hosts) 、交换机、路由器…

【STM32】TIM定时器

第一部分:定时器基本定时的功能; 第二部分:定时器的输出比较功能; 第三部分:定时器输入捕获的功能; 第四部分:定时器的编码接口。 1 TIM简介 TIM(Timer)定时器&#…

【数据库】数据库基于封锁机制的调度器,使冲突可串行化,保障事务和调度一致性

封锁使可串行化 ​专栏内容: 手写数据库toadb 本专栏主要介绍如何从零开发,开发的步骤,以及开发过程中的涉及的原理,遇到的问题等,让大家能跟上并且可以一起开发,让每个需要的人成为参与者。 本专栏会定期更…

《地理信息系统原理》笔记/期末复习资料(8. 数字高程模型)

目录 8. 数字高程模型 8.1 概述 8.1.1 数字高程模型概念 8.1.2 数字高程模型特点 8.2 DEM数据分布特征 8.2.1 格网状数据 8.2.2 离散数据 8.3 DEM的表示方法 8.3.1 数学方法 8.3.2 图形方法 8.3.3 DEM三维表达方法 8.4 TIN的生成方法 8.4.1 人工方法 8.4.2 程序自…

Android drawable layer-list右上角红点,xml布局实现,Kotlin

Android drawable layer-list右上角红点&#xff0c;xml布局实现&#xff0c;Kotlin <?xml version"1.0" encoding"utf-8"?> <layer-list xmlns:android"http://schemas.android.com/apk/res/android"><itemandroid:id"id…

Vue3获取阴历/农历日期

安装插件 pnpm add chinese-lunar-calendar引入阳历/阴历切换函数 import {getLunar} from chinese-lunar-calendarexport function lunarDate(pDate){const year pDate.getFullYear()const month pDate.getMonth() 1const day pDate.getDate()const result getLunar(yea…

VMware安装Debian12.2作为服务器(无桌面)

[TOC]VMware安装Debian12.2作为服务器&#xff08;无桌面&#xff09; 下载Debian系统 官方网站&#xff1a;https://www.debian.org/index.zh-cn.html 创建新的虚拟机 打开VMware Workstation&#xff0c;点击创建新的虚拟机 向导虚拟机类型选择 一般我会选择典型&…

记录华为云服务器(Linux 可视化 宝塔面板)-- 防火墙篇

文章目录 前言安装防火墙防火墙设置防火墙操作1.设置开机启动防火墙2.查看防火墙开放哪些端口3.重载防火墙配置&#xff08;修改配置后重新启动才生效&#xff09;4.查看防火墙状态5.开启防火墙6.关闭防火墙 若遇到无法开启查询已开放的端口查询端口是否开放&#xff08;80&…

6-70.复数的加减运算(运算符重载)

###复数加减&#xff08;运算符重载&#xff09; 声明一个复数类CComplex&#xff08;类私有数据成员为double型的real和image&#xff09; 定义构造函数&#xff0c;用于指定复数的实部与虚部。 重载<<运算符&#xff0c;以格式realimage i的格式输出当前对象&#xf…

Eaxyx 让圆球跟随鼠标移动

如果出现2023&#xff0c;代表配置成功: 进入Eaxy官方网站&#xff0c;点击文档&#xff1a; 选择 函数->绘图函数->initgraph: 可以看见initgraph&#xff08;&#xff09;函数有如下三个参数: 现在我们想生成一个1280*720大小的窗口&#xff1a; 我们需写如下代码: 但…

2_企业级Nginx使用-day1

#企业级Nginx使用-day1 学习目标和内容 1、能够了解Nginx的信号参数 2、能够进行平滑升级Nginx 3、能够配置server虚拟机 4、能够部署上线项目到LNMP架构中 5、能够了解Nginx的常用官方模块 6、能够了解日志相关使用 一、重装和升级 在实际业务场景中&#xff0c;需要使用软件…

基于景区智慧灯杆、智能指路牌基础设施的景区建设应用

智慧景区是指运用现代信息技术手段&#xff0c;将景区内的资源、服务、管理等进行数字化、网络化和智能化整合&#xff0c;打造出高效便捷、安全舒适、互动体验和可持续发展的景区。智慧景区可以从以下几个方面进行体现&#xff1a; 智慧导览&#xff1a;通过使用智能化的导览…

高级前端面试中的三个 “送命题” !!!

原型与原型链 说到原型&#xff0c;就不得不提一下构造函数&#xff0c;首先我们看下面一个简单的例子&#xff1a; function Dog(name,age){this.name name;this.age age; }let dog1 new Dog("哈士奇",3); let dog2 new Dog("泰迪",2);首先创造空的…

Android HCI日志分析案例2

案例1--蓝牙音箱电量用完后&#xff0c;配对一直失败&#xff0c;提示PIN码不正确 基于MTK平台&#xff0c;通过MTKLogger开启保存HCI日志 问题定位分析 Android日志查看logcat 搜索到关键log 01-20 10:07:55.403760 978 1075 V bt_stack: [VERBOSE2:btm_inq.cc(2032)] …

二维粒子群算法航线规划

GitHub - gabrielegilardi/PathPlanning: Implementation of particle swarm optimization (PSO) for path planning when the environment is known.

GPC-SCP03安全通道协议

概述&#xff1a; 规范全称&#xff1a; GlobalPlatform Technology Secure Channel Protocol 03 Card Specification V2.3 - Amendment D Version 1.1.2 安全通道的建立的标志即通讯双方都形成三个安全通道共享密钥(Derived Session Key)&#xff0c;它们是Kmac, Krmac, Kenc…

Feign代替RestTemplate发起http请求

RestTemplate代码: // public Order queryOrderById(Long orderId) {// // 1.查询订单// Order order orderMapper.findById(orderId);// //String url "http://localhost:8081/user/" order.getUserId();// String url "htt…

Redis hash表源码解析

整体数据结构&#xff1a;链式hash解决hash冲突、采用渐进式hash来完成扩容过程。 /** 哈希表节点*/ typedef struct dictEntry {// 键void *key;// 值union {void *val;uint64_t u64;int64_t s64;} v;// 指向下个哈希表节点&#xff0c;形成链表struct dictEntry *next;} dict…

生成带依赖Jar 包的两种常用方式:IDEA打包工具:Artifacts 和 maven-shade-plugin

文章目录 前言1、IDEA打包工具&#xff1a;Artifacts1.1 创建Artifacts1.2 选择第三方jar文件1.3 打包Artifacts1.4 测试jar包 2、maven-shade-plugin2.1、pom文件添加2.2、打包2.3、测试jar包 总结 前言 当我们编写完Java程序后&#xff0c;为了提高执行效率通常会将应用程序…

浅析 TLS(ECDHE)协议的握手流程(图解)

浅析 TLS&#xff08;ECDHE&#xff09;协议的握手流程&#xff08;图解&#xff09; 通过 wireshark 抓取 HTTPS 包&#xff0c;理解 TLS 1.2 安全通信协议的握手流程。 重点理解几个点&#xff1a; TLS 握手流程&#xff1a;通过 wireshark 抓取 HTTPS 包理解。协商加密&a…