Android12蓝牙框架

参考:
https://evilpan.com/2021/07/11/android-bt/
https://source.android.com/docs/core/connect/bluetooth?hl=zh-cn
https://developer.android.com/guide/topics/connectivity/bluetooth?hl=zh-cn
https://developer.android.com/guide/components/intents-filters?hl=zh-cn

文章目录

    • AIDL Server
        • btm_ble_set_discoverability
        • btsnd_hcic_write_cur_iac_lap
    • HCI 子系统
      • 接收数据
      • 发送数据

  • BTIF: Bluetooth Interface
  • BTU : Bluetooth Upper Layer
  • BTM: Bluetooth Manager
  • BTE: Bluetooth embedded system
  • BTA :Blueetooth application layer
  • CO: call out
  • CI: call in
  • HF : Handsfree Profile
  • HH: HID Host Profile
  • HL: Health Device Profile
  • av: audio/vidio
  • ag: audio gateway
  • ar: audio/video registration
  • gattc: GATT client
  • HIDL: HAL Interface Definition Language
    Android4.2 之后采用 bluedroid 作为协议;整体由 bluetooth.apk,bluedroid ,libbt-vendor 三个 部 分 组 成 。
    在这里插入图片描述
    蓝牙协议栈一方面是以系统服务的方式提供接口,另一方面也以client的方式给应用程序提供SDK,不管怎样,最终都是需要经过HCI协议去与Controller进行交互

对于BlueDroid而言,协议栈是在用户层实现的,内核只暴露出HCI(USB/UART)的接口。因此,我们可以从HCI出发,自底向上进行分析,也可以参考上面的框架图,从用户应用程序开始,自顶向下进行分析

AIDL Server

 bool SetScanMode(int scan_mode) 				system/bt/service/adapter.cc
 	SetAdapterProperty
 		hal::BluetoothInterface::Get()->GetHALInterface()->set_adapter_property
 			set_adapter_property				system/bt/btif/src/bluetooth.cc
 				do_in_main_thread 
 				btif_set_adapter_property		system/bt/btif/src/btif_core.cc
 					BTA_DmSetVisibility			system/bt/bta/dm/bta_dm_act.cc
 					
 			

android12/system/bt/stack/btm/btm_inq.cc

这其中涉及了几个API:
btm_ble_set_discoverability
btsnd_hcic_write_cur_iac_lap
btsnd_hcic_write_inqscan_cfg
btsnd_hcic_write_scan_enable
btm_ble_set_discoverability

第一个API是BLE相关,内部实际上最终也调用了btsnd_hcic_xxx的类似接口。IAC意为Inquiry Access Code,蓝牙baseband定义了几个固定IAC,分别是LIAC和GIAC(见baseband)。LAP是蓝牙地址的一部分,如下图所示:

BDADDR

  • NAP: Non-significant Address Part, NAP的值在跳频同步帧中会用到
  • UAP: Upper Address Part,UAP的值会参与对蓝牙协议算法的选择
  • LAP: Lower Address Part,由设备厂商分配,LAP的值作为Access Code的一部分,唯一确定某个蓝牙设备
  • SAP (significant address part) = UAP + LAP
btsnd_hcic_write_cur_iac_lap
// system/bt/stack/hcic/hcicmds.cc
void btsnd_hcic_write_cur_iac_lap(uint8_t num_cur_iac, LAP* const iac_lap) {
    btu_hcif_send_cmd(LOCAL_BR_EDR_CONTROLLER_ID, p);
}
/UINTx_TO_STREAM(pp, n)的作用是将整数以小端的形式写入p->data中,最终调用btu_hcif_send_cmd函数发送数据
    
// system/btstack/btu/btu_hcif.cc
void btu_hcif_send_cmd(UNUSED_ATTR uint8_t controller_id, BT_HDR* p_buf) {
    uint8_t* stream = p_buf->data + p_buf->offset;
    stream++;
    btu_hcif_log_command_metrics(opcode, stream,
                                 android::bluetooth::hci::STATUS_UNKNOWN, false);
    hci_layer_get_interface()->transmit_command(
        p_buf, btu_hcif_command_complete_evt, btu_hcif_command_status_evt,
        vsc_callback);
}
//可见p_buf->data中保存的就是HCI数据,前16位为opcode,其中高6字节为ogf,低10字节为ocf,也就是我们平时使用hcitool cmd时的前两个参数

HCI 子系统

继续跟踪transmit_command,就来到了HCI子系统中

transmit_command		system/bt/hci/src/hci_layer.cc
	enqueue_command		

process_command_credits

其调用链路为:

BluetoothHciCallbacks::hciEventReceived 		system/bt/hci/src/hci_layer_android.cc
	hci_event_received							system/bt/hci/src/hci_layer.cc
		filter_incoming_event
			process_command_credits

接收数据

BluetoothHciCallbacks::hciEventReceived 这个函数回调是在HCI初始化的时候调用的

BluetoothHci::initialize(system/bt/vendor_libs/linux/interface/bluetooth_hci.cc):

Return<void> BluetoothHci::initialize		system/bt/vendor_libs/linux/interface/bluetooth_hci.cc
	openBtHci								
	

fd_watcher_本质上是针对hci_fd文件句柄的读端事件监控,后者由openBtHci函数产生,该函数由厂商实现,接口文件是hardware/interfaces/bluetooth/1.0/IBluetoothHci.hal。在Linux中的参考实现如下:

发送数据

继续回头接着上节之前的内容讲,我们的任务队列是在process_command_credits中被消费的,取出来之后需要进入到hci_thread线程中执行。从接收数据一节中也能看出,hci接口本身使用的是串行总线,因此不能并发地发送数据,所有命令都是在之前的命令响应后再发送。

值得一提的是,enqueue_command实际上绑定的是函数event_command_ready,以包含我们命令内容和对应回调的类型waiting_command_t为参数:

static void enqueue_command(waiting_command_t* wait_entry) {
	base::Closure callback = base::Bind(&event_command_ready, wait_entry);
    //...
	command_queue.push(std::move(callback));
}

因此,负责执行HCI发送命令的是event_command_ready函数:

  static void event_command_ready(waiting_command_t* wait_entry) {
    {
      /// Move it to the list of commands awaiting response
      std::lock_guard<std::recursive_timed_mutex> lock(
          commands_pending_response_mutex);
      wait_entry->timestamp = std::chrono::steady_clock::now();
      list_append(commands_pending_response, wait_entry);
    }
    // Send it off
    packet_fragmenter->fragment_and_dispatch(wait_entry->command);

    update_command_response_timer();
  }

首先将command放到一个等待响应的队列里,然后分片发送:

static void fragment_and_dispatch(BT_HDR* packet) {
    CHECK(packet != NULL);

    uint16_t event = packet->event & MSG_EVT_MASK;
    uint8_t* stream = packet->data + packet->offset;

    // We only fragment ACL packets
    if (event != MSG_STACK_TO_HC_HCI_ACL) {
      callbacks->fragmented(packet, true);
      return;
    }
    // ACL/L2CAP fragment...
}

实现中只对ACL类型的HCI数据进行分片发送,不管是不是分片,都对最后一个packet调用callbacks->fragmented(),callbacks的类型是packet_fragmenter_callbacks_t,在packet_fragmenter_t->init中初始化并设置。而packet_fragmenter的初始化发生在hci_module_start_up()中,HCI层定义的回调如下:

static const packet_fragmenter_callbacks_t packet_fragmenter_callbacks = {  transmit_fragment, dispatch_reassembled, fragmenter_transmit_finished }; 

fragmented即对应transmit_fragment,对应定义如下:

// Callback for the fragmenter to send a fragment static void transmit_fragment(BT_HDR* packet, bool send_transmit_finished) {    btsnoop->capture(packet, false);     // HCI command packets are freed on a different thread when the matching    // event is received. Check packet->event before sending to avoid a race.    bool free_after_transmit =        (packet->event & MSG_EVT_MASK) != MSG_STACK_TO_HC_HCI_CMD &&        send_transmit_finished;     hci_transmit(packet);     if (free_after_transmit) {      buffer_allocator->free(packet);    } } 

hci_transmit有不同平台的实现,分别在:

  • hci/src/hci_layer_linux.c
  • hci/src/hci_layer_android.c

前者是通过write直接向HCI socket的fd写入,后者是调用IBluetoothHci::sendHciCommand去实现,接口定义同样是在hardware/interfaces/bluetooth/1.0/IBluetoothHci.hal文件中。

因为不同手机厂商的SoC中集成蓝牙芯片的接口不同,有的是使用USB连接,有的是使用UART连接,因此需要给安卓提供一个统一的操作接口,这个接口就很适合由HAL(HIDL)来进行抽象。这部分实现通常是使用Linux中已有的UART/USB驱动进行操作,以提高代码的复用性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/211412.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

适用于 Windows的U盘/硬盘数据恢复软件前 10 名列表

您是否正在寻找适用于 Windows 的最佳笔式驱动器数据恢复软件&#xff1f;是这样吗&#xff0c;那么这里我们列出了 10 款 USB 恢复工具&#xff0c;用于从 USB 闪存驱动器中检索丢失的数据。有多种工具可以帮助用户从笔式驱动器或 USB 闪存驱动器恢复永久删除、丢失、损坏和格…

Beta冲刺随笔-DAY6-橘色肥猫

这个作业属于哪个课程软件工程A这个作业要求在哪里团队作业–站立式会议Beta冲刺作业目标记录Beta冲刺Day6团队名称橘色肥猫团队置顶集合随笔链接Beta冲刺笔记-置顶-橘色肥猫-CSDN博客 文章目录 SCRUM部分站立式会议照片成员描述 PM报告项目程序&#xff0f;模块的最新运行图片…

海林猴头菇 区域公用品牌形象正式发布

猴头菇是中国八大“山珍”之一&#xff0c;自古就有“山珍猴头&#xff0c;海味燕窝”之说&#xff0c;猴头菇在中国既是食用珍品&#xff0c;又是重要的药用菌。 海林市位于黑龙江省东南部&#xff0c;地处长白山脉张广才岭东麓&#xff0c;素有“林海雪原”之称。 海林猴头菇…

鸿蒙工具DevEco Studio调试Build task failed. Open the Run window to view details.

DevEco Studio 预览代码时候出现的问题 1.进入设置 2.打开设置&#xff0c;构建&#xff0c;执行&#xff0c;部署下面的Hvigor&#xff0c; 把构建守护进程关掉就行。 然后重启启动一下就好了

运维 | 关于IP网络相关的概念和原理

关注&#xff1a;CodingTechWork IP地址 IP介绍 概述 IP是TCP/IP协议族的核心&#xff0c;IP地址是电脑在网络中的唯一标识&#xff0c;全球唯一&#xff08;G公网IP&#xff09;。IP地址&#xff08;Internet Protocol Address&#xff09;是互联网协议地址&#xff0c;也…

模式识别与机器学习(七):集成学习

集成学习 1.概念1.1 类型1.2 集成策略1.3 优势 2. 代码实例2.1boosting2.2 bagging2.3 集成 1.概念 集成学习是一种机器学习方法&#xff0c;旨在通过组合多个个体学习器的预测结果来提高整体的预测性能。它通过将多个弱学习器&#xff08;个体学习器&#xff09;组合成一个强学…

Hdoop学习笔记(HDP)-Part.06 安装OracleJDK

目录 Part.01 关于HDP Part.02 核心组件原理 Part.03 资源规划 Part.04 基础环境配置 Part.05 Yum源配置 Part.06 安装OracleJDK Part.07 安装MySQL Part.08 部署Ambari集群 Part.09 安装OpenLDAP Part.10 创建集群 Part.11 安装Kerberos Part.12 安装HDFS Part.13 安装Ranger …

损失函数代价函数

代价函数&#xff08;Cost Function&#xff09;和损失函数&#xff08;Loss Function&#xff09;是深度学习中两个相关但不完全相同的概念&#xff0c;它们用于衡量模型的性能&#xff0c;并在训练过程中进行参数优化。尽管经常被混用&#xff0c;但在一些文献中也有区别对待…

深度学习(四):pytorch搭建GAN(对抗网络)

1.GAN 生成对抗网络&#xff08;GAN&#xff09;是一种深度学习模型&#xff0c;由两个网络组成&#xff1a;生成器&#xff08;Generator&#xff09;和判别器&#xff08;Discriminator&#xff09;。生成器负责生成假数据&#xff0c;而判别器则负责判断数据是真实的还是 f…

Python常见实战问题解析与解决方案

更多Python学习内容&#xff1a;ipengtao.com 大家好&#xff0c;我是涛哥&#xff0c;今天为大家分享 Python常见实战问题解析与解决方案&#xff0c;全文5200字&#xff0c;阅读大约13分钟。 Python作为一门强大而灵活的编程语言&#xff0c;常常面临各种实际挑战。在本文中&…

Flink(九)【时间语义与水位线】

前言 2023-12-02-20:05&#xff0c;终于写完啦&#xff0c;最近状态不错。刚写完又收到了她的消息哈哈哈哈&#xff0c;开心。 再去全力打拼一次&#xff0c;奋战一场&#xff0c;就算最后打了败仗也无所谓&#xff0c;至少你留下了足迹。 《解忧杂货店》 1、时间语义 …

【计算机网络】15、NAT、NAPT 网络地址转换、打洞

文章目录 一、概念二、分类&#xff08;主要是传统 NAT&#xff09;2.1 基本 NAT2.2 NAPT 三、访问NAT下的内网设备的方式3.1 多拨3.2 端口转发、DMZ3.3 UPnP IGD、NAT-PMP3.4 服务器中转&#xff1a;frp 内网穿透3.4.1 NAT 打洞3.4.2 NAT 类型与打洞成功率3.4.2.1 完全圆锥形 …

C++设计模式——Bridge模式(下)

在上篇 《C设计模式——Bridge模式&#xff08;上&#xff09;》中我们对于桥接模式做了一些介绍。介于桥接模式在实际项目开发中使用广泛&#xff0c;而且也是面试中常问常新的话题。在本篇&#xff0c;我们专注bridge模式在具体的项目开发中的应用&#xff0c;举几个例子来说…

快手自动评论助手:开发流程与所需技术的深度解析

先来看实操成果&#xff0c;↑↑需要的同学可看我名字↖↖↖↖↖&#xff0c;或评论888无偿分享 一、引言 随着互联网的发展&#xff0c;越来越多的人开始使用快手这款短视频平台。在这个平台上&#xff0c;用户可以分享自己的生活点滴&#xff0c;观看他人的精彩瞬间。然而&am…

Ext4文件系统解析(一)

1、前言 熟悉Linux操作系统的都应该或多或少的了解或者使用过Ext4文件系统。 接下来&#xff0c;会简单介绍Ext4文件系统的一些特性和工作原理。 2、常用概念 在介绍Ext文件系统之前&#xff0c;先简单描述一些相关概念。 块(Block)&#xff1a;Ext文件系统存储分配的基本单…

软件工程 - 第8章 面向对象建模 - 4 - 物理体系结构建模

构件图 构件图概述 构件图描述了软件的各种构件和它们之间的依赖关系。 构件图的作用 在构件图中&#xff0c;系统中的每个物理构件都使用构件符号来表示&#xff0c;通常&#xff0c;构件图看起来像是构件图标的集合&#xff0c;这些图标代表系统中的物理部件&#xff0c;…

java学习part30callabel和线程池方式

140-多线程-线程的创建方式3、4&#xff1a;实现Callable与线程池_哔哩哔哩_bilibili 1.Callable 实现类 使用方式 返回值 2.线程池

Linux expect命令详解

在Linux系统中&#xff0c;expect 是一款非常有用的工具&#xff0c;它允许用户自动化与需要用户输入进行交互的程序。本文将深入探讨expect命令的基本语法、使用方法以及一些最佳实践。 什么是Expect命令&#xff1f; expect 是一个用于自动化交互式进程的工具。它的主要功能…

【PyTorch】线性回归

文章目录 1. 代码实现1.1 一元线性回归模型的训练 2. 代码解读2.1. tensorboardX2.1.1. tensorboardX的安装2.1.2. tensorboardX的使用 1. 代码实现 波士顿房价数据集下载 1.1 一元线性回归模型的训练 import numpy as np import torch import torch.nn as nn from torch.ut…

Ext4文件系统解析(二)

1、前言 想要了解EXT文件系统的工作原理&#xff0c;那了解文件系统在磁盘上的分布就是必不可少的。这一节主要介绍EXT文件系统硬盘存储的物理结构。 由于当前主流的CPU架构均采用小端模式&#xff0c;因此下文介绍均已小端模式为准。 2、超级块 2.1 属性 下表列举出超级块…