Elasticsearch:么是向量嵌入?

向量嵌入定义

向量嵌入 (vector embeddings) 是一种将单词、句子和其他数据转换为捕获其含义和关系的数字的方法。 它们将不同的数据类型表示为多维空间中的点,其中相似的数据点更紧密地聚集在一起。 这些数字表示可以帮助机器更有效地理解和处理这些数据。

单词和句子嵌入是向量嵌入的两种最常见的子类型,但还有其他子类型。 一些向量嵌入可以表示整个文档,以及旨在匹配视觉内容的图像向量、用于确定用户偏好的用户配置文件向量、帮助识别相似产品的产品向量等等。 向量嵌入可帮助机器学习算法找到数据中的模式并执行情感分析、语言翻译、推荐系统等任务。

向量嵌入的类型

有几种不同类型的向量嵌入常用于各种应用中。 这里有一些例子:

  • 词嵌入将单个词表示为向量。 Word2Vec、GloVe 和 FastText 等技术通过从大型文本语料库中捕获语义关系和上下文信息来学习词嵌入。
  • 句子嵌入将整个句子表示为向量。 Universal Sentence Encoder (USE) 和 SkipThought 等模型生成的嵌入可以捕获句子的整体含义和上下文。
  • 文档嵌入将文档(从报纸文章、学术论文到书籍的任何内容)表示为向量。 它们捕获整个文档的语义信息和上下文。 Doc2Vec 和段落向量等技术旨在学习文档嵌入。
  • 图像嵌入通过捕获不同的视觉特征将图像表示为向量。 卷积神经网络 (CNN) 等技术以及 ResNet 和 VGG 等预训练模型可为图像分类、对象检测和图像相似性等任务生成图像嵌入。
  • 用户嵌入将系统或平台中的用户表示为向量。 它们捕获用户偏好、行为和特征。 用户嵌入可用于从推荐系统到个性化营销以及用户细分的所有领域。
  • 产品嵌入将电子商务或推荐系统中的产品表示为向量。 它们捕获产品的属性、功能和任何其他可用的语义信息。 然后,算法可以使用这些嵌入根据产品的向量表示来比较、推荐和分析产品。

嵌入和向量是同一回事吗?

在向量嵌入的背景下,是的,嵌入和向量是同一件事。 两者都指的是数据的数字表示,其中每个数据点都由高维空间中的向量表示。

术语 “向量” 仅指具有特定维度的数字数组。 在向量嵌入的情况下,这些向量表示连续空间中上述的任何数据点。 相反,“嵌入” 特指将数据表示为向量的技术,以捕获有意义的信息、语义关系或上下文特征。 嵌入旨在捕获数据的底层结构或属性,通常通过训练算法或模型来学习。

虽然嵌入和向量可以在向量嵌入的上下文中互换使用,但 “嵌入” 强调以有意义和结构化的方式表示数据的概念,而 “向量” 指的是数字表示本身。

向量嵌入是如何创建的?

向量嵌入是通过机器学习过程创建的,其中训练模型将上面列出的任何数据(以及其他数据)转换为数值向量。 以下是其工作原理的快速概述:

  1. 首先,收集一个大型数据集,该数据集表示你要为其创建嵌入的数据类型,例如文本或图像。
  2. 接下来,你将对数据进行预处理。 这需要根据你正在使用的数据类型,通过消除噪声、规范化文本、调整图像大小或执行各种其他任务来清理和准备数据。
  3. 你将选择一个最适合你的数据目标的神经网络模型,并将预处理的数据输入到模型中。
  4. 该模型通过在训练期间调整其内部参数来学习数据中的模式和关系。 例如,它学习将经常一起出现的单词关联起来或识别图像中的视觉特征。
  5. 当模型学习时,它会生成表示数据含义或特征的数值向量(或嵌入)。 每个数据点(例如单词或图像)都由唯一的向量表示。
  6. 此时,你可以通过测量嵌入在特定任务上的性能或使用人工来评估给定结果的相似程度来评估嵌入的质量和有效性。
  7. 一旦您判断嵌入运行良好,你就可以将它们用于分析和处理你的数据集。

向量嵌入是什么样的?

向量的长度或维数取决于你使用的特定嵌入技术以及你希望如何表示数据。 例如,如果你正在创建词嵌入,它们的尺寸通常从几百到几千不等 —— 这对于人类来说太复杂了,无法直观地绘制图表。 句子或文档嵌入可能具有更高的维度,因为它们捕获更复杂的语义信息。

向量嵌入本身通常表示为数字序列,例如 [0.2, 0.8, -0.4, 0.6, ...]。 序列中的每个数字对应于特定的特征或维度,并有助于数据点的整体表示。 也就是说,向量中的实际数字本身没有意义。 数字之间的相对值和关系捕获语义信息并允许算法有效地处理和分析数据。

向量嵌入的应用

向量嵌入在各个领域都有广泛的应用。 以下是你可能会遇到的一些常见问题:

  • 自然语言处理 (NLP) 广泛使用向量嵌入来执行情感分析、命名实体识别、文本分类、机器翻译、问答和文档相似性等任务。 通过使用嵌入,算法可以更有效地理解和处理文本相关数据。
  • 搜索引擎使用向量嵌入来检索信息并帮助识别语义关系。 向量嵌入帮助搜索引擎接受用户查询并返回相关的主题网页、推荐文章、更正查询中拼写错误的单词以及建议用户可能认为有帮助的类似相关查询。 该应用程序通常用于支持语义搜索。
  • 个性化推荐系统利用向量嵌入来捕获用户偏好和项目特征。 它们根据用户与向量中的项目之间的密切匹配,帮助将用户个人资料与用户可能喜欢的项目(例如产品、电影、歌曲或新闻文章)进行匹配。 一个熟悉的例子是 Netflix 的推荐系统。 有没有想过它是如何选择符合你口味的电影的? 它通过使用项目相似性度量来建议与用户通常观看的内容相似的内容。
  • 视觉内容也可以通过向量嵌入进行分析。 在此类向量嵌入上训练的算法可以对图像进行分类、识别对象并在其他图像中检测它们、搜索相似图像以及将所有类型的图像(以及视频)分类为不同的类别。 Google Lens 使用的图像识别技术是一种常用的图像分析工具。
  • 异常检测算法使用向量嵌入来识别各种数据类型中的异常模式或异常值。 该算法对代表正常行为的嵌入进行训练,以便它可以学习发现与规范的偏差,这些偏差可以根据嵌入之间的距离或相异性度量来检测。 这在网络安全应用程序中特别方便。
  • 图分析使用图嵌入,其中图是由线(称为边)连接的点(称为节点)的集合。 每个节点代表一个实体,例如人、网页或产品,每条边代表这些实体之间的关系或连接。 这些向量嵌入可以做很多事情,从在社交网络中推荐朋友到检测网络安全异常(如上所述)。
  • 音频和音乐也可以被处理和嵌入。 向量嵌入捕获音频特征,使算法能够有效地分析音频数据。 这可用于各种应用,例如音乐推荐、流派分类、音频相似性搜索、语音识别和说话人验证。

开始使用 Elasticsearch 进行向量嵌入

Elasticsearch 平台本身将强大的机器学习和人工智能集成到解决方案中,帮助你构建有利于用户并更快完成工作的应用程序。 Elasticsearch 是 Elastic Stack 的核心组件,Elastic Stack 是一组用于数据摄取、丰富、存储、分析和可视化的免费开放工具。

Elasticsearch 可以帮助你:

  • 改善用户体验并提高转化率
  • 实现新的见解、自动化、分析和报告
  • 提高员工在内部文档和应用程序中的工作效率

了解有关 Elasticsearch 向量数据库的更多信息

向量嵌入资源

  • 什么是向量搜索? 使用 ML 进行更好的搜索
  • 什么是自然语言处理(NLP)?
  • 什么是词嵌入?
  • 如何部署 NLP:文本嵌入和向量搜索
  • 向量搜索的优势 — 以及 IT 领导者需要它来改善搜索体验的 5 个原因

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/210015.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Jenkins持续集成之修改jenkins工作目录

修改jenkins工作目录 一般不建议把工作目录放到默认的C盘,故可以更改到其他盘中 前置条件:先在其他盘中新建工作目录的文件;如下图 1、首先打开任务管理器,找到服务中的Jenkins进程 2、右击点击转到详细信息; 3、再右…

分享4个工具,轻松搞定PDF和图像中提取文本

大型语言模型已经席卷了互联网,导致更多的人没有认真关注使用这些模型最重要的部分:高质量的数据! 本文旨在提供一些有效从任何类型文档中提取文本的技术。 Python库 本文专注于Pytesseract、easyOCR、PyPDF2和LangChain库。实验数据是一个…

shell 脚本计算距离最近的坐标

shell 脚本计算距离最近的坐标 坐标数据文件geo.log格式如下: beijing(116.405285,39.904989) tinajin(117.190182,39.125596) hebei(114.502461,38.045474) shanxi(112.549248,37.857014) neimenggu(111.670801,40.818311) liaoning(123.429096,41.796767) jilin(1…

012 OpenCV sobel边缘检测

目录 一、环境 二、soble原理介绍 三、源码实验 一、环境 本文使用环境为: Windows10Python 3.9.17opencv-python 4.8.0.74 二、soble原理介绍 Sobel边缘检测是一种广泛应用于图像处理领域的边缘检测算法,它通过计算图像灰度函数在水平方向和垂直…

包装材料ERP是什么?包装材料ERP有什么用

市面上的包装材料种类多种多样,而这些差异化的包装材料对应的产成品规格、型号、质量、销售策略和生产工艺等方面存在诸多差异。 另外,通常包装材料企业的营销渠道比较广泛,不同的销售平台有多样化的业务流程和管理方式,相同的商…

数字员工「取数宝」上新!4大优势,解决电商取数难题

全域电商,是近几年的新趋势,几乎所有商家都在布局全域,追求全域增长。但商家发现,随着投入成本的上涨,利润却没有增加。 其中最为突出的是——商家为保证全域数据的及时更新,通过堆人头的方式完成每日取数…

idea汉化

所有的jetbrains 汉化包下载地址, 包括leda ,pycharm /,datagrip 等软件,,所有方法都一样:搜索对应的版本需要的包 下载后,在idea的插件中选择从磁盘加载,然后重启 ,即可…

11.9密码加密,加盐算法(手动实现)

一.Spring提供了mb5加密的方法 注意:这种加密不安全,是有规律的,可以被暴力穷举(彩虹表). 二.加盐加密(每次调用都是随机的,无规律的) 1.思路: 每次调用该方法产生唯一的盐值, 加上明文密码, 再经过md5加密形成最终的密码. 三.代码实现 package com.example.demo.common;im…

C语言之结构体

一.前言引入. 我们知道在C语言中有内置类型,如:整型,浮点型等。但是只有这些内置类 型还是不够的,假设我想描述学⽣,描述⼀本书,这时单⼀的内置类型是不⾏的。描述⼀个学⽣需要名字、年龄、学号、⾝⾼、体…

【数据结构(五)】递归

文章目录 1. 递归的概念2. 递归能解决什么问题3. 递归的规则4. 递归实际应用案例4.1. 迷宫问题4.2. 八皇后问题4.2.1. 思路分析4.2.1. 代码实现 1. 递归的概念 简单的说: 递归就是方法自己调用自己,每次调用时传入不同的变量。递归有助于编程者解决复杂的问题&…

第二节:服务拆分(案例)

一、服务拆分注意事项 1.1 拆分原则 每个微服务,不要重复开发相同业务(例如在单体项目中用到了一个查询,这个查询功能能够查询出订单信息、商品信息、用户信息,那么在拆分微服务时就不要将其写在一起了,订单的微服务只…

推荐3个完美替代 Navicat 的工具

现在企业,mysql数据库用的比较多,mysql数据库客户端的需求也就比较大,navicat就被大家所熟知。 这个工具,确实好用,功能也非常强大,但是,它的强大,是需要付费,或者用一些…

windows ce Remote Process Explorer定位程序崩溃地址

windows ce Remote Process Explorer定位程序崩溃地址 一:下载地址二:使用1)找到程序基准地址2) 定位程序异常位置 一:下载地址 链接:https://pan.baidu.com/s/1fQVBpputtRmynqa95DaPrg 提取码:cx65 二&a…

hexo博客部署到云服务器

欢迎大家到我的博客浏览。hexo博客部署到云服务器 | YinKais Blog 这篇文章带大家将hexo博客部署到云服务器上! 一、服务器环境安装 1、安装 node js yum install gcc-c make yum -y install nodejs yum -y install npm 验证 node -v npm -v 2、安装git、ngin…

DOM 事件的注册和移除

前端面试大全DOM 事件的注册和移除 🌟经典真题 🌟DOM 注册事件 HTML 元素中注册事件 DOM0 级方式注册事件 DOM2 级方式注册事件 🌟DOM 移除事件 🌟真题解答 🌟总结 🌟经典真题 总结一下 DOM 中如何…

SQL Server 数据库,为products表添加数据

在插入数据的时候,需要注意以下事项。 > 每次插入一整行数据,不可能只插入半行或几列数据。 > 数据值的数目必须与列数相同,每个数据值的数据类型、精度和小数位数也必须与相应的 列匹配。 > INSERT语句不能为标识列指定值&#…

DCCK“启航计划“3+2第三课相机参数于选型

面积小,通电发热都用以引入噪声

Leetcode—392.判断子序列【简单】

2023每日刷题&#xff08;四十七&#xff09; Leetcode—392.判断子序列 双指针实现代码 bool isSubsequence(char* s, char* t) {int lens strlen(s);int lent strlen(t);int left 0, right 0;if(lens 0) {return true;}while(right < lent) {if(t[right] s[left])…

百度下拉词挖掘工具,百度下拉词挖掘获取软件

百度下拉词挖掘工具 百度下拉词挖掘工具&#xff0c;作为站长和SEO人员必备的工具之一&#xff0c;有着令人瞩目的功能。它能够追踪用户在百度搜索栏中输入关键词时&#xff0c;百度自动为用户推荐的下拉关键词。这一推荐不仅仅是用户搜索历史的体现&#xff0c;更是一种市场需…

计算机网络TCP篇①

目录 一、TCP 基本信息 1.1、TCP 的头格式 1.2、什么是 TCP 1.3、什么是 TCP 连接 1.4、TCP 与 UDP 的区别 1.2、TCP 连接建立 1.2.1、TCP 三次握手的过程 1.2.2、为什么是三次握手&#xff1f;不是两次&#xff1f;四次&#xff1f;&#xff08;这个问题真是典中典&am…