以太网PHY,MAC接口

本文主要介绍以太网的 MAC 和 PHY,以及之间的 MII(Media Independent Interface ,媒体独立接口)和 MII 的各种衍生版本——GMII、SGMII、RMII、RGMII等。

简介

从硬件的角度看,以太网接口电路主要由MAC(Media Access Control)控制器和物理层接口PHY(Physical Layer,PHY)两大部分构成。如下图所示:

图片

DMA控制器通常属于CPU的一部分,用虚线放在这里是为了表示DMA控制器可能会参与到网口数据传输中。但是,在实际的设计中,以上三部分并不一定独立分开的。由于,PHY整合了大量模拟硬件,而MAC是典型的全数字器件

考虑到芯片面积及模拟/数字混合架构的原因,通常,将MAC集成进微控制器而将PHY留在片外。更灵活、密度更高的芯片技术已经可以实现MAC和PHY的单芯片整合。

可分为下列几种类型:

  • CPU集成MAC与PHY。目前来说并不多见

图片

  • CPU集成MAC,PHY采用独立芯片。比较常见

图片

  • CPU不集成MAC与PHY,MAC与PHY采用集成芯片。比较常见

图片

MAC及PHY工作在OSI七层模型的数据链路层和物理层。具体如下:

图片

什么是MAC

MAC(Media Access Control)即媒体访问控制子层协议。

该部分有两个概念:MAC可以是一个硬件控制器 及 MAC通信以协议。该协议位于OSI七层协议中数据链路层的下半部分,主要负责控制与连接物理层的物理介质。MAC硬件大约就是下面的样子了:

图片

在发送数据的时候,MAC协议可以事先判断是否可以发送数据,如果可以发送将给数据加上一些控制信息,最终将数据以及控制信息以规定的格式发送到物理层。

在接收数据的时候,MAC协议首先判断输入的信息并是否发生传输错误,如果没有错误,则去掉控制信息发送至LLC(逻辑链路控制)层。该层协议是以太网MAC由IEEE-802. 3以太网标准定义。

以太网数据链路层其实包含MAC(介质访问控制)子层和LLC(逻辑链路控制)子层。一块以太网卡MAC芯片的作用不但要实现MAC子层和LLC子层的功能,还要提供符合规范的PCI界面以实现和主机的数据交换。

MAC从PCI总线收到IP数据包(或者其他网络层协议的数据包)后,将之拆分并重新打包成最大1518Byte、最小64Byte的帧。

这个帧里面包括了目标MAC地址、自己的源MAC地址和数据包里面的协议类型(比如IP数据包的类型用80表示,最后还有一个DWORD(4Byte)的CRC码。

可是目标的MAC地址是哪里来的呢?

这牵扯到一个ARP协议(介乎于网络层和数据链路层的一个协议)。第一次传送某个目的IP地址的数据的时候,先会发出一个ARP包,其MAC的目标地址是广播地址,里面说到:“谁是xxx.xxx.xxx.xxx这个IP地址的主人?”因为是广播包,所有这个局域网的主机都收到了这个ARP请求。

收到请求的主机将这个IP地址和自己的相比较,如果不相同就不予理会,如果相同就发出ARP响应包。

这个IP地址的主机收到这个ARP请求包后回复的ARP响应里说到:“我是这个IP地址的主人”。这个包里面就包括了他的MAC地址。以后的给这个IP地址的帧的目标MAC地址就被确定了。(其它的协议如IPX/SPX也有相应的协议完成这些操作)。

IP地址和MAC地址之间的关联关系保存在主机系统里面,叫做ARP表。由驱动程序和操作系统完成。

以太网MAC芯片的一端接计算机PCI总线,另外一端就接到PHY芯片上,它们之间是通过MII接口链接的。一个MAC的结构图如下图所示:

图片

什么是PHY

PHY((Physical Layer,PHY))是IEEE802.3中定义的一个标准模块,STA(station management entity,管理实体,一般为MAC或CPU)通过SMI(Serial Manage Interface)对PHY的行为、状态进行管理和控制,而具体管理和控制动作是通过读写PHY内部的寄存器实现的。一个PHY的基本结构如下图:

图片

PHY是物理接口收发器,它实现OSI模型的物理层。

IEEE-802.3标准定义了以太网PHY。包括MII/GMII(介质独立接口)子层、PCS(物理编码子层)、PMA(物理介质附加)子层、PMD(物理介质相关)子层、MDI子层。它符合IEEE-802.3k中用于10BaseT(第14条)和100BaseTX(第24条和第25条)的规范。

注:PHY寄存器在IEEE802.3标准的 22.2.4 Management functions 节有介绍,但不涉及所有的寄存器,个别寄存器需要到其它章节中看,当然,文档里面也提到该在哪里找到哪个寄存器。

什么是MII

MII(Media Independent Interface)即媒体独立接口,MII 接口是 MAC 与 PHY 连接的标准接口。它是 IEEE-802.3 定义的以太网行业标准。MII 接口提供了 MAC 与 PHY 之间、PHY 与 STA(Station Management)之间的互联技术,该接口支持 10Mb/s 与 100Mb/s 的数据传输速率,数据传输的位宽为 4 位。MII 接口如下图所示:

图片

MII接口主要包括四个部分。一是从MAC层到PHY层的发送数据接口,二是从PHY层到MAC层的接收数据接口,三是从PHY层到MAC层的状态指示信号,四是MAC层和PHY层之间传送控制和状态信息的MDIO接口。

图片

MII 包括一个数据接口,以及一个 MAC 和 PHY 之间的管理接口:

  • TX_CLK(transmit clock):TX_CLK (Transmit Clock) 是一个连续的时钟信号(即系统启动,该信号就一直存在),它是 TX_EN、TXD、TX_ER(信号方向为从 RS 到 PHY)的参考时钟,TX_CLK 由 PHY 驱动 TX_CLK 的时钟频率是数据传输速率的 25%,偏差 ±100ppm。例如,100Mb/s 模式下,TX_CLK 时钟频率为 25MHz,占空比在 35% 至 65% 之间。

  • TXD<3:0>(transmit data):TXD 由 RS 驱动,同步于 TX_CLK,在 TX_CLK 的时钟周期内,并且TX_EN 有效,TXD 上的数据被 PHY 接收,否则 TXD 的数据对 PHY 没有任何影响。

  • TX_ER(transmit coding error):TX_ER 同步于 TX_CLK,在数据传输过程中,如果 TX_ER 有效超过一个时钟周期,并且此时TX_EN 是有效的,则数据通道中传输的数据是无效的,没用的。注:当 TX_ER 有效并不影响工作在 10Mb/s 的 PHY 或者 TX_EN 无效时的数据传输。在 MII 接口的连线中,如果 TX_ER 信号线没有用到,必须将它下拉接地。

  • TX_EN:发送使能。TX_EN 由 Reconciliation 子层根据 TX_CLK 上升沿同步进行转换。

  • RX_CLK:它与 TX_CLK 具有相同的要求,所不同的是它是 RX_DV、RXD、RX_ER(信号方向是从 PHY 到 RS)的参考时钟。RX_CLK 同样是由 PHY 驱动,PHY 可能从接收到的数据中提取时钟 RX_CLK,也有可能从一个名义上的参考时钟(e.g., the TX_CLK reference)来驱动RX_CLK。

  • RXD<3:0>(receive data):RXD由RS驱动,同步于 RX_CLK,在 RX_CLK 的时钟周期内,并且 RX_DV 有效,RXD 上的数据被RS 接收,否则 RXD 的数据对 RS 没有任何影响。

  • RX_ER(receive error):RX_ER 同步于 RX_CLK,其在 RX 通道中的作用类似于 TX_ER 对于 TX 通道数据传输的影响。

  • RX_DV(Receive Data Valid):RXD_DV 同步于 RX_CLK,被 PHY 驱动,它的作用如同于发送通道中的 TX_EN,不同的是在时序上稍有一点差别:为了让数据能够成功被RS接收,要求RXD_DV有效的时间必须覆盖整个 FRAME 的过程,即starting no later than the Start Frame Delimiter (SFD) and excluding any End-of-Frame delimiter。MII以4位半字节方式传送数据双向传输,时钟速率25MHz。其工作速率可达100Mb/s。

  • COL(collision detected):COL 不需要同步于参考时钟。

  • CRS(carrier sense):CRS 不需要同步于参考时钟,只要通道存在发送或者接收过程,CRS 就需要有效。

  • MDC:由站管理实体向 PHY 提供,作为在 MDIO 信号上传送信息的定时参考。MDC 是一种非周期性的信号,没有最高或最低时间。无论 TX_CLK 和 RX_CLK 的标称周期如何,MDC 的最小高低时间应为 160 ns,MDC 的最小周期为 400 ns。

  • MDIO:是 PHY 和 STA 之间的双向信号。它用于在 PHY 和 STA 之间传输控制信息和状态。控制信息由 STA 同步地针对 MDC 驱动并且由 PHY 同步地采样。状态信息由 PHY 针对 MDC 同步驱动并由 STA 同步采样。

PHY 里面的部分寄存器是 IEEE 定义的,这样PHY把自己的目前的状态反映到寄存器里面。

MAC 通过 SMI 总线不断的读取PHY 的状态寄存器以得知目前 PHY 的状态。例如连接速度、双工的能力等。

当然也可以通过 SMI 设置 PHY的寄存器达到控制的目的。例如流控的打开关闭、自协商模式还是强制模式等。

不论是物理连接的MII总线和 SMI 总线,还是 PHY 的状态寄存器和控制寄存器都是由IEEE的规范的。因此不同公司的 MAC 和 PHY 一样可以协调工作。当然为了配合不同公司的 PHY 的自己特有的一些功能,驱动需要做相应的修改。

MII 支持 10Mbps 和 100Mbps 的操作,一个接口由 14 根线组成,它的支持还是比较灵活的。但是有一个缺点是因为它一个端口用的信号线太多,如果一个 8 端口的交换机要用到 112 根线,16 端口就要用到 224 根线,到 32 端口的话就要用到 448 根线。

一般按照这个接口做交换机是不太现实的。所以现代的交换机的制作都会用到其它的一些从 MII 简化出来的标准,比如 RMII、SMII、GMII等。

什么是RMII(Reduced Media Independant Interface)

简化媒体独立接口是标准的以太网接口之一,比 MII 有更少的 I/O 传输。RMII 口是用两根线来传输数据的,MII 口是用 4 根线来传输数据的,GMII 是用 8 根线来传输数据的。

MII/RMII 只是一种接口,对于10Mbps 线速,MII 的时钟速率是 2.5MHz 就可以了,RMII 则需要 5MHz;对于 100Mbps 线速,MII 需要的时钟速率是 25MHz,RMII 则是 50MHz。

MII/RMII 用于传输以太网包,在 MII/RMII 接口是 4/2bit 的,在以太网的PHY里需要做串并转换,编解码等才能在双绞线和光纤上进行传输,其帧格式遵循IEEE 802.3(10M)/IEEE 802.3u(100M)/IEEE 802.1q(VLAN)。

以太网帧的格式为:前导符 + 开始位 + 目的 mac 地址 + 源 mac 地址 + 类型/长度 + 数据 + padding(optional) + 32bitCRC。如果有 vlan,则要在类型/长度后面加上 2 个字节的 vlan tag,其中 12bit 来表示vlan id,另外,4bit 表示数据的优先级!

什么是GMII(Gigabit Media Independant Interface)

GMII是千兆网的MII接口,这个也有相应的RGMII接口,表示简化了的GMII接口。GMII 采用 8 位接口数据,工作时钟125MHz,因此传输速率可达 1000Mbps

同时兼容 MII 所规定的10/100 Mbps工作方式。GMII 接口数据结构符合IEEE以太网标准,该接口定义见 IEEE 802.3-2000。

图片

什么是RGMII

RGMII(Reduced Gigabit Media Independant Interface),精简GMII接口。相对于GMII相比,RGMII具有如下特征:

  • 发送/接收数据线由8条改为4条

  • TX_ER和TX_EN复用,通过TX_CTL传送

  • RX_ER与RX_DV复用,通过RX_CTL传送

  • 1 Gbit/s速率下,时钟频率为125MHz

  • 100 Mbit/s速率下,时钟频率为25MHz

  • 10 Mbit/s速率下,时钟频率为2.5MHz

信号定义如下:

图片

虽然RGMII信号线减半,但TXC/RXC时钟仍为125Mhz,为了达到1000Mbit的传输速率,TXD/RXD信号线在时钟上升沿发送接收GMII接口中的TXD[3:0]/RXD[3:0],在时钟下降沿发送接收TXD[7:4]/RXD[7:4],并且信号TX_CTL反应了TX_EN和TX_ER状态,即在TXC上升沿发送TX_EN,下降沿发送TX_ER,同样的道理试用于RX_CTL,下图为发送接收的时序:

图片

什么是SMI

SMI:串行管理接口(Serial Management Interface),通常直接被称为MDIO接口(Management Data Input/Output Interface)。

MDIO最早在IEEE 802.3的第22卷定义,后来在第45卷又定义了增强版本的MDIO,其主要被应用于以太网的MAC和PHY层之间,用于MAC层器件通过读写寄存器来实现对PHY层器件的操作与管理。

MDIO主机(即产生MDC时钟的设备)通常被称为STA(Station Management Entity),而MDIO从机通常被称为MMD(MDIO Management Device)。通常STA都是MAC层器件的一部分,而MMD则是PHY层器件的一部分。

MDIO接口包括两条线,MDIO和MDC,其中MDIO是双向数据线,而MDC是由STA驱动的时钟线。MDC时钟的最高速率一般为2.5MHz,MDC也可以是非固定频率,甚至可以是非周期的。

MDIO接口只是会在MDC时钟的上升沿进行采样,而并不在意MDC时钟的频率(类似于I2C接口)。如下图所示。

图片

QA

网卡的MAC和PHY间的关系?

网卡工作在osi的最后两层,物理层和数据链路层,物理层定义了数据传送与接收所需要的电与光信号、线路状态、时钟基准、数据编码和电路等,并向数据链路层设备提供标准接口.物理层的芯片称之为PHY.

数据链路层则提供寻址机构、数据帧的构建、数据差错检查、传送控制、向网络层提供标准的数据接口等功能.以太网卡中数据链路层的芯片称之为MAC控制器.

很多网卡的这两个部分是做到一起的.他们之间的关系是pci总线接mac总线,mac接phy,phy接网线(当然也不是直接接上的,还有一个变压装置).

PHY和MAC之间如何进行沟通

通过IEEE定义的标准的MII/GigaMII(Media Independed Interfade,介质独立界面)界面连接MAC和PHY。这个界面是IEEE定义的。MII界面传递了网络的所有数据和数据的控制。

而MAC对PHY的工作状态的确定和对PHY的控制则是使用SMI(Serial Management Interface)界面通过读写PHY的寄存器来完成的。

PHY里面的部分寄存器也是IEEE定义的,这样PHY把自己的目前的状态反映到寄存器里面,MAC通过SMI总线不断的读取PHY的状态寄存器以得知目前PHY的状态,例如连接速度,双工的能力等。

当然也可以通过SMI设置PHY的寄存器达到控制的目的,例如流控的打开关闭,自协商模式还是强制模式等。

我们看到了,不论是物理连接的MII界面和SMI总线还是PHY的状态寄存器和控制寄存器都是有IEEE的规范的,因此不同公司的MAC和PHY一样可以协调工作。当然为了配合不同公司的PHY的自己特有的一些功能,驱动需要做相应的修改。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/209598.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

OpenTelemetry系列 - 第4篇 OpenTelemetry K8S生态

目录 一、【Helm】添加OTel Helm repo二、【Helm Chart】OTel Collector2.1 daemonset2.2 deloyment 三、【K8S Operator】OTel Operator3.1 安装OTel Operator3.2 部署OpenTelemetryCollector3.2.1 Deloyment Mode3.2.2 DeamonSet Mode3.2.3 StatefulSetMode3.2.4 Sidecar Mod…

Matlab R2022b 安装成功小记

Matlab R2022b 安装成功小记 前言一、 下载链接二、 安装过程小记 叮嘟&#xff01;这里是小啊呜的学习课程资料整理。好记性不如烂笔头&#xff0c;今天也是努力进步的一天。一起加油进阶吧&#xff01; 前言 windows 10系统之前安装过Matlab R2010b做基础研究&#xff0c;最…

【高效开发工具系列】Hutool Http工具类

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

基于Spring Cloud智慧工地可视化管理平台源码

智慧工地是聚焦工程施工现场&#xff0c;紧紧围绕人、机、料、法、环等关键要素&#xff0c;综合运用物联网、云计算、大数据、移动计算和智能设备等软硬件信息技术&#xff0c;与施工生产过程相融合。 一、什么是智慧工地 智慧工地是指利用移动互联、物联网、智能算法、地理…

【Linux】awk 使用

awk 输出 // 打印所有列 $ awk {print $0} file // 打印第一列 $ awk {print $1} file // 打印第一和第三列 $ awk {print $1, $3} file // 打印第三列和第一列&#xff0c;注意先后顺序 $ cat file | awk {print $3, $1} …

DDPM代码详解

最近准备要学习一下AIGC&#xff0c;因此需要从一些基本网络开始了解&#xff0c;比如DDPM&#xff0c;本篇文章会从代码解析角度来供大家学习了解。DDPM(Denoising Diffusion Probabilistic Models) 是一种扩散模型。 扩散模型包含两个主要的过程&#xff1a;加噪过程和去噪过…

C语言--每日选择题--Day32

如果大家对读研究生和就业不知道如何抉择&#xff0c;我的建议是看大家的经济基础&#xff0c;如果家里不是很需要你们工作&#xff0c;就读研提升自己的学历&#xff0c;反之就就业&#xff1b;毕竟经济基础决定上层建筑&#xff1b; 第一题 1. 下面代码的结果是&#xff1a;…

牛客小白月赛82(A~C)

目录 A.谜题&#xff1a;质数 输入描述 输出描述 输入 输出 解析 B.Kevin逛超市 2 (简单版本) 输入描述 输出描述 输入 输出 思路 C.被遗忘的书籍 题目描述 输入描述 输出描述 输入 输出 输入 输出 思路 比赛链接 牛客小白月赛82_ACM/NOI/CSP/CCPC/ICPC算…

C#Backgroundworker与Thread的区别

前言 当谈到多线程编程时&#xff0c;C#中的BackgroundWorker和Thread是两个常见的选择。它们都可以用于实现并行处理和异步操作&#xff0c;但在某些方面有一些重要的区别。本文将详细解释BackgroundWorker和Thread之间的区别以及它们在不同场景中的使用。 目录 前言1. Backgr…

微软 Power Platform 零基础 Power Pages 网页搭建教程学习实践进阶以及常见问题解答(二)

微软 Power Platform 零基础 Power Pages 网页搭建教程学习实践进阶及常见问题解答&#xff08;二&#xff09; Power Pages 学习实践进阶 微软 Power Platform 零基础 Power Pages 网页搭建教程学习实践进阶及常见问题解答&#xff08;二&#xff09;Power Pages 核心工具和组…

基于单片机设计的智能水泵控制器

一、前言 在一些场景中&#xff0c;如水池、水箱等水体容器的管理中&#xff0c;保持水位的稳定是至关重要的。传统上&#xff0c;人们通常需要手动监测水位并进行水泵的启停控制&#xff0c;这种方式不仅效率低下&#xff0c;还可能导致水位过高或过低&#xff0c;从而对水体…

在 AlmaLinux9 上安装Oracle Database 23c

在 AlmaLinux9 上安装Oracle Database 23c 0. 下载 Oracle Database 23c 安装文件1. 安装 Oracle Database 23c3. 连接 Oracle Database 23c4. &#xff08;谨慎&#xff09;卸载 Oracle Database 23c 0. 下载 Oracle Database 23c 安装文件 版权问题&#xff0c;下载地址请等待…

企业加密软件有哪些(公司防泄密软件)

企业加密软件是专门为企业设计的软件&#xff0c;旨在保护企业的敏感数据和信息安全。这些软件通过使用加密技术来对数据进行加密&#xff0c;使得数据在传输和存储过程中不会被未经授权的人员获取和滥用。 企业加密软件的主要功能包括数据加密、文件加密、文件夹加密、移动设备…

专业视频剪辑利器Final Cut Pro for Mac,让你的创意无限发挥

在如今的数字时代&#xff0c;视频内容已经成为人们生活中不可或缺的一部分。无论是在社交媒体上分享生活点滴&#xff0c;还是在工作中制作专业的营销视频&#xff0c;我们都希望能够以高质量、高效率地进行视频剪辑和制作。而Final Cut Pro for Mac作为一款专业级的视频剪辑软…

2023-12-01 AndroidR 系统在root目录下新建文件夹和创建链接,编译的时候需要修改sepolicy权限

一、想在android 系统的根目录下新建一个tmp 文件夹&#xff0c;建立一个链接usr链接到data目录。 二、在system/core/rootdir/Android.mk里面的LOCAL_POST_INSTALL_CMD 增加 dev proc sys system data data_mirror odm oem acct config storage mnt apex debug_ramdisk tmp …

20、Resnet 为什么这么重要

&#xff08;本文已加入“计算机视觉入门与调优”专栏&#xff0c;点击专栏查看更多文章信息&#xff09; resnet 这一网络的重要性&#xff0c;上一节大概介绍了一下&#xff0c;可以从以下两个方面来有所体现&#xff1a;第一是 resnet 广泛的作为其他神经网络的 back bone&…

麻吉POS集成:如何无代码开发实现电商平台和CRM系统的高效连接

麻吉POS集成的前沿技术&#xff1a;无代码开发 在竞争激烈的电商市场中&#xff0c;商家们急需一种高效且易于操作的技术手段来实现系统间的快速连接与集成。麻吉POS以其前沿的无代码开发技术&#xff0c;让这一需求成为可能。无代码开发是一种允许用户通过图形用户界面进行编…

RocketMQ事务消息源码解析

RocketMQ提供了事务消息的功能&#xff0c;采用2PC(两阶段协议)补偿机制&#xff08;事务回查&#xff09;的分布式事务功能&#xff0c;通过这种方式能达到分布式事务的最终一致。 一. 概述 半事务消息&#xff1a;指的是发送至broker但是还没被commit的消息&#xff0c;在半…

java引入jjwt时候报错Undable to load class named ...

原因是包没有引全,像下面这样写重新加载maven <dependency><groupId>io.jsonwebtoken</groupId><artifactId>jjwt-api</artifactId><version>0.11.1</version></dependency><dependency><groupId>io.jsonwebtoken…

mac安装elasticsearch

下载地址&#xff1a; Past Releases of Elastic Stack Software | Elastic https://www.elastic.co/cn/downloads/past-releases#elasticsearch 选择7.10版本 进入es bin目录下执行启动命令 ./elasticsearch 会报错 ./elasticsearch-env: line 126: syntax error near u…