Leetcod面试经典150题刷题记录——数组 / 字符串篇

数组 / 字符串篇

    • 1. 合并两个有序数组
      • Python3
        • 排序法
        • 双指针法
    • 2. 删除有序数组中的重复元素
    • 3. H 指数
      • Python3
        • 排序法
        • 计数排序法
        • 二分查找

有个技巧,若想熟悉语言的写法,可以照着其它语言的题解,写目标语言的代码,比如有C/C++的题解,写Python的算法,这样同时可以对比两种语言,并熟悉Python代码中API的使用,并且可以增强代码的迁移能力,语言只是一种实现的工具,不被语言束缚也是一种自由。

1. 合并两个有序数组

合并两个有序数组 - leetcode

题目描述:
给你两个按 非递减顺序 排列的整数数组 nums1 和 nums2,另有两个整数 m 和 n ,分别表示 nums1 和 nums2 中的元素数目。
请你 合并 nums2 到 nums1 中,使合并后的数组同样按 非递减顺序 排列。
注意:最终,合并后数组不应由函数返回,而是存储在数组 nums1 中。为了应对这种情况,nums1 的初始长度为 m + n,其中前 m 个元素表示应合并的元素,后 n 个元素为 0 ,应忽略。nums2 的长度为 n 。

解题思路:
(1) 排序法。将nums2添加至nums1并排序,但这样的做法未利用到nums1与nums2非递减的特性,时间复杂度是排序的时间复杂度 O ( ( m + n ) l o g 2 ( m + n ) ) O((m+n)log_2(m+n)) O((m+n)log2(m+n)),空间复杂度认为是快排的空间复杂度 O ( l o g 2 ( m + n ) ) O(log_2(m+n)) O(log2(m+n))
(2) 双指针法。新建一个数组sorted用来存储,然后将nums1指向新数组的内容,用双指针比较nums1和nums2各元素的大小,存储至sorted数组中

Python3

排序法
class Solution:
    def merge(self, nums1: List[int], m: int, nums2: List[int], n: int) -> None:
        """
        Do not return anything, modify nums1 in-place instead.
        """
        nums1[m:] = nums2
        nums1.sort()
双指针法
class Solution:
    def merge(self, nums1: List[int], m: int, nums2: List[int], n: int) -> None:
        """
        Do not return anything, modify nums1 in-place instead.
        """
        p1, p2 = 0,0
        index_bound1, index_bound2 = m-1,n-1 # 数组下标索引边界,这和长度有区别
        sorted = []
        while p1 <= index_bound1 or p2 <= index_bound2:
            # 1.若有某一数组下标出界,表明该数组已判断完成,应存另一数组的值
            if p1 > index_bound1:
                sorted.append(nums2[p2])
                p2 += 1
            elif p2 > index_bound2:
                sorted.append(nums1[p1])
                p1 += 1
            # 2.比较两数大小,存更小的,以确保是非递减序列
            elif (nums1[p1] <= nums2[p2]):
                sorted.append(nums1[p1])
                p1 += 1
            else:
                sorted.append(nums2[p2])
                p2 += 1
        nums1[:] = sorted

2. 删除有序数组中的重复元素

题目描述:
给你一个 非严格递增排列 的数组 nums ,请你 原地 删除重复出现的元素,使每个元素 只出现一次 ,返回删除后数组的新长度。元素的 相对顺序 应该保持 一致 。然后返回 nums 中唯一元素的个数。
考虑 nums 的唯一元素的数量为 k ,你需要做以下事情确保你的题解可以被通过:
更改数组 nums ,使 nums 的前 k 个元素包含唯一元素,并按照它们最初在 nums 中出现的顺序排列。nums 的其余元素与 nums 的大小不重要。
返回 k 。
题目归纳:
首先分析该有序数组的特点
由于数组有序,且非严格递增
故对于任意 i < j,若有nums[i] = nums[j]
则有任意i <= k <= j,nums[i] = nums[k] = nums[j]
利用上述特点,使用快慢指针进行删除重复元素

解题思路:
快慢指针法。慢指针用来指向第一个(可能)遇到重复元素的位置处,而快指针寻找新元素,当快指针找到新元素,把新元素赋值给慢指针处做替换。

class Solution:
    def removeDuplicates(self, nums: List[int]) -> int:
        slow_p = 1 # 数组若只有一个元素,则下标为0, 这样的数组中不会有重复项
        for fast_p in range(1, len(nums), 1):
            if(nums[fast_p-1] != nums[fast_p]): # 快指针找到新元素,利用了任意i <= k <= j,nums[i] = nums[k] = nums[j]特性
                nums[slow_p] = nums[fast_p]
                slow_p += 1 # slow_p的增加是有条件的,要找到不相同的元素
        return slow_p

3. H 指数

题目描述:
给你一个整数数组 citations ,其中 citations[i] 表示研究者的第 i 篇论文被引用的次数。计算并返回该研究者的 h 指数。
根据维基百科上 h 指数的定义:h 代表“高引用次数” ,一名科研人员的 h 指数是指,他(她)至少发表h 篇论文,并且每篇论文至少被引用h 次。如果该 h 有多种可能的值,h 指数是最大的那个。
题目归纳:
H-index Wiki,我想,h 指数的基本思想是:论文发的越多,不一定代表水平越高,而是发的越多,也要引用的越多才行,引用数认为是发表数认为是,即有质有量 h 指数才高,可以看出原始的 h 指数有个缺点,如果论文发的少引用的多,h 指数也不会很高,也就是有质无量的 h 指数低,无质无量无质有量自然就更低了,这里把两个量的量纲统一了,就得到了下面的图。
H-index from wiki

解题思路:
(1) 排序法。将数组citations从高到底排列,h不断增加,直到引用数 h 无法增大,则返回 h 。对应上图,就是寻找到虚线和数据分布的“分界点”,在papers(citations)坐标轴上的值。
(2) 计数排序法。

Python3

排序法

时间复杂度: O ( n l o g 2 n ) O(nlog_{2}{n}) O(nlog2n) n n n为数组citations长度
空间复杂度: O ( l o g 2 n ) O(log_{2}{n}) O(log2n) n n n为数组citations长度

class Solution:
    def hIndex(self, citations: List[int]) -> int:
        sorted_citation = sorted(citations, reverse = True)
        # python里可以用分号在一行中分割语句,曾经python为了阅读的简便性,抛弃了分号,现在又拿回来了,会不会有一天,这些语言来一个大一统,赋值号居然还有:=,=这两种写法,想出:=的人我很好奇他个人的精神状态
        h = 0; i = 0; n = len(citations)
        while i < n and sorted_citation[i] > h:
            h += 1
            i += 1
        return h
计数排序法

【排序算法】计数排序 - bilibili
计数排序是一种非比较排序,比较排序的复杂度下限是O(nlogn)已经得到过论文证明。

class Solution:
    def hIndex(self, citations: List[int]) -> int:
        # 新建并维护一个数组citation_papers,来记录当前引用次数的论文有多少篇
        # 对于论文i引用次数citations[i]超过论文发表数len(citations)的情况,将其按总论文发表数len(citations)计算即可,这样排序的数的大小范围就可以降低至[0,n=len(citations)]
        # 从而计数排序的时间复杂度,就降低至O(n)。现实中,一个学者一辈子能发表的论文数量顶天了也就百来篇,再夸张点,一千篇,不需要考虑n是无穷增长的,这点大小对计数排序是恰到好处的,因为计数排序就适合范围不大的排序。
        n = len(citations); H_papers = 0 # H_papers: 符合H指数的论文数
        citation_papers = [0] * (n+1) # 生成计数排序数组,用到了python的扩充操作,此数组下标为citation,数组内容为paper数量
        
        # 计算计数排序数组
        for c in citations:
            if c >= n:             # 引用次数超过论文发表数,引用次数按发表论文数计算
                citation_papers[n] += 1
            else:
                citation_papers[c] += 1

        # 倒序遍历
        for citation in range(n, -1, -1): # (-1, n] step = -1,实际上的下标范围即[0,n]
            H_papers += citation_papers[citation]
            if citation <= H_papers:
                return citation

        return 0
二分查找

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/207741.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Qt开发 之 安装程序错误--安装进程(qt.tool.perl)的解决办法

文章目录 1、问题描述2、问题原因3、解决方案3.1、不关闭错误弹出窗口3.2、手动安装Perl3.3、安装Perl完成后&#xff0c;点击“ignore”继续安装 1、问题描述 Win11下&#xff0c;安装qt5.12.12时遇到“安装进程(qt.tools.perl)运行期间出现错误” 问题描述&#xff1a; Err…

表的创建和管理

表的创建和管理 一条数据的存储过程标识符的命名规则MySQL中的数据类型管理和创建数据库创建数据库使用数据库修改数据库 创建表创建方式1创建方式2查看数据表结构 修改表追加一个列修改一个列重命名一个列删除一个列 重命名表删除表清空表 一条数据的存储过程 存储数据是处理数…

语义分割—FCN网络 学习笔记 (附代码)

论文地址&#xff1a;https://arxiv.org/abs/1411.4038 代码地址&#xff1a;https://gitcode.com/mirrors/wzmiaomiao/deep-learning-for-image-processing/overview?utm_sourcecsdn_github_accelerator 1.是什么&#xff1f; 全卷积网络&#xff08;Fully Convolutional N…

解决 from . import _imaging as core ImportError: DLL load failed: 找不到指定的模块。

升级pillow版本就完事了 卸载掉之前的旧版本 conda uninstall pillow升级到新的版本就解决了 pip uninstall pillow 那个错误就解决了

项目实战-编写ssm整合配置文件

1、父工程pom.xml <properties><maven.compiler.source>17</maven.compiler.source><maven.compiler.target>17</maven.compiler.target><project.build.sourceEncoding>UTF-8</project.build.sourceEncoding><spring.version>…

【Android知识笔记】架构专题(三)

如何用工程手段,提高写代码的生产力?(元编程) 即如何写同样多的代码,花费更少的时间?如何自动生成代码,哪种代码可以被自动生成?哪些环节能够作为自动生成代码的切入点? 代码自动生成技术 代码自动生成,指的并不是让计算机凭自己的意愿生成代码。而是让预先实现好…

Unity 注释的方法

1、单行注释&#xff1a;使用双斜线&#xff08;//&#xff09;开始注释&#xff0c;后面跟注释内容。通常注释一个属性或者方法&#xff0c;如&#xff1a; //速度 public float Speed;//打印输出 private void DoSomething() {Debug.Log("运行了我"); } …

使用JDBC操作数据库时,插入数据中文乱码

如图&#xff1a; 解决办法&#xff1a; 修改连接数据库的路径&#xff0c;即url 如下&#xff1a; 设置编码格式为utf-8 urljdbc:mysql://localhost:3306/qfedu?useUnicodetrue&characterEncodingUTF-8再次运行&#xff0c;插入数据即可

CRM系统:让企业商机管理变得轻松愉快

传统企业的经常出现团队分工不合理、实施过程不可见、进度难以把控等情况。这样不仅会让项目实施周期变长&#xff0c;还会导致客户满意度降低&#xff0c;给企业的发展带来了不好的影响。因此&#xff0c;进行商机管理至关重要。那么&#xff0c;CRM系统如何进行企业的商机阶段…

速通MySql

一、简介 1、什么是数据库 数据仓库&#xff0c;用来存储数据。访问必须用SQL语句来访问 2、数据库的类型 1、关系型数据库&#xff1a;Oracle、DB2、Microsoft SQL Server、Microsoft Access、MySQL等 可以用SQL语句方便的在一个表以及多个表之间做非常复杂的数据查询&#…

TA-Lib学习研究笔记(八)——Momentum Indicators 上

TA-Lib学习研究笔记&#xff08;八&#xff09;——Momentum Indicators 上 Momentum Indicators 动量指标&#xff0c;是最重要的股票分析指标&#xff0c;能够通过数据量化分析价格、成交量&#xff0c;预测股票走势和强度&#xff0c;大部分指标都在股票软件中提供。 1. A…

SSM框架(四):SSM整合 案例 + 异常处理器 +拦截器

文章目录 一、整合流程图1.1 Spring整合Mybatis1.2 Spring整合SpringMVC 二、表现层数据封装2.1 问题引出2.2 统一返回结果数据格式 代码设计 三、异常处理器3.1 概述3.2 异常处理方案 四、前端五、拦截器5.1 概念5.2 入门案例5.3 拦截器参数5.4 拦截器链 一、整合流程图 1.1 S…

如何做一名合格的班主任

班主任是学生在校园内最直接的“家长”&#xff0c;担负着对学生全面管理和教育的责任。该如何才能成为一名合格的班主任呢&#xff1f; 一、具备扎实的专业知识 班主任是一名教师&#xff0c;扎实的专业知识是成为合格班主任的基本条件。在教学过程中&#xff0c;班主任要能够…

代码随想录算法训练营第三十七天 _ 贪心算法_738.单调自增的数字、968.监督二叉树

学习目标&#xff1a; 60天训练营打卡计划&#xff01; 学习内容&#xff1a; 738.单调自增的数字 听不懂的时候就到该动手了。必须要从后向前操作&#xff0c;才能把压力逐级传给最前面的这一位。入如&#xff1a;322 class Solution {// java中的String不能修改&#xf…

探索数据之美:深入学习Plotly库的强大可视化

1. 引言&#xff1a; Plotly 是一个交互性可视化库&#xff0c;可以用于创建各种漂亮的图表和仪表板。它支持多种编程语言&#xff0c;包括Python、R、JavaScript。在Python中&#xff0c;Plotly提供了Plotly Express和Graph Objects两个主要的绘图接口。 2. Plotly库简介&am…

SQL中left join、right join、inner join等的区别

一张图可以简洁明了的理解出left join、right join、join、inner join的区别&#xff1a; 1、left join 就是“左连接”&#xff0c;表1左连接表2&#xff0c;以左为主&#xff0c;表示以表1为主&#xff0c;关联上表2的数据&#xff0c;查出来的结果显示左边的所有数据&#…

visual Studio MFC 平台实现图像增强中Gray-level slicing,Bit-plane slicing,对比度拉伸三种方法

MFC 实现图像增强–分段式变换 本文使用visual Studio MFC 平台实现图像增强中的第三大类分段式变换中的三种方法&#xff0c;包括Gray-level slicing&#xff0c;Bit-plane slicing&#xff0c;对比度拉伸&#xff0e; 关于其他MFC单文档工程可参考 01-Visual Studio 使用MFC …

android https 证书过期

有的时候 我们android https 证书过期 &#xff0c;或者使用明文等方式去访问服务器 可能会碰到类似的 问题 &#xff1a; javax.net.ssl.SSLHandshakeException: Chain validation failed java.security.cert.CertPathValidatorException: Response is unreliable: its validi…

JavaScript类型判断:解密变量真实身份的神奇技巧

文章目录 1. typeof运算符2. instanceof运算符3. Object.prototype.toString4. Array.isArray5. 使用constructor属性6. 使用Symbol.toStringTag7. 使用is类型判断库8. 谨慎使用隐式类型转换结语 &#x1f389;JavaScript类型判断&#xff1a;解密变量真实身份的神奇技巧 ☆* o…

OpenTSDB(CVE-202035476)漏洞复现及利用

任务一&#xff1a; 复现环境中的命令注入漏洞。 任务二&#xff1a; 利用命令注入执行whoami&#xff0c;使用DNS外带技术获取结果 任务三&#xff1a;使用反弹shell&#xff0c;将漏洞环境中的shell反弹到宿主机或者vps服务器。 任务一&#xff1a; 1.搭建好环境 2.先去了…