文章解读与仿真程序复现思路——电力系统自动化EI\CSCD\北大核心《参与电网削峰调节的电动重卡换电站调度策略》

标题"参与电网削峰调节的电动重卡换电站调度策略"表明这是一个关于电动重型卡车和电网协同运营的主题。下面对标题中的关键术语进行解读:

  1. 电动重卡: 指的是使用电力驱动而不是传统燃油的重型卡车,通常是指货运卡车。电动卡车的使用有助于减少尾气排放,提高能源利用效率。

  2. 换电站: 是指用于更换电动车辆电池的设施。电动车辆可以在这些站点更换电池,以便继续行驶,而不需要等待充电。

  3. 电网削峰调节: 是一种电力系统调度策略,通过在电网需求峰值时降低用电需求,从而减轻电网负担。电动车辆可以作为分布式储能系统,通过充电和放电的灵活性参与电网调节。

  4. 调度策略: 指的是一套计划和决策的方法,用于有效地组织和管理电动重卡的运营和电池更换过程,以最大限度地参与电网削峰调节。

因此,整个标题的含义是:关于电动重型卡车和电网共同合作,通过在电网需求高峰时灵活调整电动车辆的运营计划和电池更换,以实现电网削峰调节的一套调度策略。这种策略旨在通过电动车辆的柔性运营,有针对性地降低用电峰值,提高电网的可持续性和稳定性。

摘要:换电站(BSS)因其快速、便捷的特点在当今时代获得了迅猛的推广和发展,在电动重卡领域,换电站建设已初见规模并依然保持着高速发展。如何对电动重卡换电站进行充电调度以实现电网友好,是一个重点研究方向。首先,针对电动重卡换电需求在时间上分布规律较弱的特点,使用统计分析法分析换电站历史运行数据,得到一天内各时段的换电需求预测值;其次,提出基于换电需求预测的日内调度策略和基于实际换电需求的日内实时修正策略,以确定电池充电数量和允许充电时间;然后,建立以电网削峰为目标的时间-功率模型,结合电网背景负荷曲线,使用差分算法对电池的充电功率和实际充电时间进行求解;最后,通过算例证明了调度策略和时间-功率模型的有效性。

这段摘要涵盖了电动重卡换电站充电调度的关键方面。以下是对摘要内容的解读:

  1. 换电站发展背景: 换电站由于其快速、便捷的特点在现代得到了广泛的推广和发展,特别是在电动重卡领域。这种设施的建设已经初步形成规模,并且仍然在快速发展之中。

  2. 电动重卡换电站充电调度的重要性: 如何对电动重卡换电站进行充电调度以实现电网友好是当前重要的研究方向。这表明了充电调度对于确保电动车辆充电过程对电网影响较小的重要性。

  3. 换电需求预测和调度策略: 针对电动重卡换电需求在时间分布上的不确定性,作者使用了统计分析方法来分析换电站的历史运行数据,从而获得一天内各时段的换电需求预测值。这为制定充电调度策略提供了数据基础。提出了两种策略:一是基于预测的日内调度策略,另一种是基于实际需求的日内实时修正策略。这些策略有助于确定电池充电数量和允许充电时间,从而更好地满足车辆的需求和电网的要求。

  4. 时间-功率模型和电网削峰目标: 为了实现电网友好的充电调度,建立了以电网削峰为目标的时间-功率模型。这个模型结合了电网背景负荷曲线,使用差分算法对电池的充电功率和实际充电时间进行求解。这意味着在制定充电计划时,会考虑电网负荷情况,以便更好地与电网协同运行。

  5. 调度策略和模型验证: 最后,作者通过算例证明了所提出的调度策略和时间-功率模型的有效性,说明这些方法在实际场景中具备实用性和可行性。

总的来说,这段摘要介绍了如何针对电动重卡换电站的充电需求,利用历史数据分析、预测方法和电网削峰目标建立调度策略和模型,以实现更有效的电动车辆充电和电网协同运行。

关键词:电动重卡; 换电站;电网削峰;换电流程;需求预测;日内调度; 差分算法;

  1. 电动重卡: 指的是电动驱动的重型卡车,通常使用电池或其他电力源作为动力来源,以替代传统的内燃机驱动。

  2. 换电站: 换电站是提供电动车辆充电服务的设施,相比充电桩,它允许电动车辆快速更换电池,以减少充电时间,提高电动车辆的使用效率。

  3. 电网削峰: 电网削峰是指通过调整电力需求,减少峰值负荷,以平滑电网负荷曲线的过程。这有助于提高电网的稳定性和效率,减少能源浪费。

  4. 换电流程: 换电流程是指电动车辆在换电站进行电池更换的整个过程,包括到达换电站、电池更换、支付等步骤。

  5. 需求预测: 需求预测是通过分析历史数据或其他信息,预测未来一定时间范围内的需求变化。在这里,特指对电动重卡换电需求的预测,以便制定合理的充电调度计划。

  6. 日内调度: 日内调度是指在一天内对资源或活动进行合理安排和调整,以满足实际需求。在这里,指的是对电动重卡换电站充电的日程安排和调整,以最优化电池充电过程。

  7. 差分算法: 差分算法是一种数值计算方法,通常用于对离散数据进行微分或积分。在这个背景下,差分算法可能用于解决关于电池充电功率和实际充电时间的问题,以实现更精确的充电调度。这可能包括在时间-功率模型中使用差分算法来优化电池充电过程。

仿真算例:本文采用中国雄安某实际电动重卡换电站的有关参数作为算例进行策略验证。该换电站服务的电动重卡群体为 50 辆,站内电池与服务的电动重卡均配备相同型号的电池,额定充电功率 Pce为 240 kW,最大充电功率不能超过额定充电功率的两倍。选择该换电站所在台区的变压器在某一个月内的实测负荷数据,并对数据进行一定平滑处理后作为算例使用的背景负荷数据。换电站配置参数如下:换电站常用电池数量 N为 8 个,充电机功率下限 Pc,min为 0,充电机功率上限Pc,max为 360 kW,电池额定容量 WB为 288 kW·h,司机愿意等待时间 twait为 15 min,站内变压器容量上限PT,max为 2 000 kV·A,站内变压器功率因数 cos φ 为0.9,单次换电时长 th为 6 min。根据换电站配置数据及式(1),可得划分时段的步长 tp为 72 min,按照此步长对一天的数据自 00:00开始进行划分,得到换电站历史运行数据部分统计结果如表 1 所示。使用各时段众数作为各时段基本需求预测值Np,next,使用各时段最大值作为各时段极端需求预测值 Nm,next。

仿真程序复现思路:

  1. 数据准备:

    • 收集并准备实际电动重卡换电站的参数数据,包括电动重卡数量、电池参数、充电机功率范围、换电站配置参数等。
    • 获取所在台区的变压器在某一个月内的实测负荷数据,并进行适当的平滑处理,以获得背景负荷数据。
  2. 时段划分:

    • 根据换电站配置数据及相关公式,计算划分时段的步长 tp 为 72 分钟。
    • 从 00:00 开始按照步长对一天的数据进行划分,得到不同时段的数据。
  3. 基本需求和极端需求预测:

    • 使用划分的时段数据,计算各时段的基本需求预测值 Np_next,采用众数作为预测值。
    • 计算各时段的极端需求预测值 Nm_next,采用最大值作为预测值。
  4. 差分算法应用:

    • 利用差分算法处理背景负荷数据,以获取负荷的变化率或趋势。
    • 结合预测的基本需求和极端需求,调整负荷数据,模拟电动重卡换电站的实际负荷情况。
  5. 算法实现:

    • 使用编程语言(如Python)实现上述思路,包括数据处理、时段划分、需求预测、差分算法等。
    • 下面是一个简化的Python示例代码,假设已有背景负荷数据 load_data 和其他参数:
import numpy as np
import pandas as pd
from statsmodels.tsa.arima.model import ARIMA

# 模拟数据生成
np.random.seed(0)

# 生成背景负荷数据
background_load = np.random.normal(loc=1000, scale=100, size=1000)

# 使用ARIMA模型生成基本需求和极端需求的预测数据
def generate_demand_forecast(data):
    model = ARIMA(data, order=(1, 1, 1))  # ARIMA模型,可以根据实际情况调整参数
    fit_model = model.fit()
    forecast = fit_model.forecast(steps=len(data))
    return forecast

basic_demand_forecast = generate_demand_forecast(background_load)
extreme_demand_forecast = generate_demand_forecast(background_load)

# 差分算法处理负荷数据
def difference(data):
    return np.diff(data, prepend=0)

# 时段划分
def divide_day(data, time_step):
    return [data[i:i + time_step] for i in range(0, len(data), time_step)]

# 模拟实际负荷数据
def simulate_load(background_load, basic_demand, extreme_demand, time_step):
    load_diff = difference(background_load)

    # 按时段划分数据
    background_load_divided = divide_day(background_load, time_step)
    basic_demand_divided = divide_day(basic_demand, time_step)
    extreme_demand_divided = divide_day(extreme_demand, time_step)
    load_diff_divided = divide_day(load_diff, time_step)

    # 模拟实际负荷数据
    actual_load = []
    for i in range(len(background_load_divided)):
        actual_load.extend(
            background_load_divided[i]
            + basic_demand_divided[i]
            + extreme_demand_divided[i]
            + load_diff_divided[i]
        )

    return actual_load

# 使用示例
time_step = 72  # 步长为72分钟
actual_load_data = simulate_load(background_load, basic_demand_forecast, extreme_demand_forecast, time_step)

# 将结果转换为DataFrame,方便查看
result_df = pd.DataFrame({
    'Background Load': background_load,
    'Basic Demand Forecast': basic_demand_forecast,
    'Extreme Demand Forecast': extreme_demand_forecast,
    'Actual Load': actual_load_data
})

# 打印结果
print(result_df)

在这个例子中,generate_demand_forecast 函数使用ARIMA模型生成基本需求和极端需求的预测数据。然后,simulate_load 函数结合差分算法模拟出实际负荷数据。

请注意,ARIMA模型只是一个简单的示例,你可能需要根据实际情况选择更适合的模型,并调整参数。这只是一个起点,实际应用可能需要更多的细化和优化。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/206844.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

封装flutter webview页面

例如在flutter里面跳转百度页面 需要安装webview_flutter webview_page.dart import package:flutter/material.dart; import package:webview_flutter/webview_flutter.dart;class MyWebView extends StatefulWidget {const MyWebView({super.key, required this.webViewUrl,…

堆栈_有效括号

题比较特殊,主要在于它的所有要输入,都是左括号开头,没有右括号开头的,比如"] [",这种是不算为括号的,由于必然是对称的,若能符合,因而直接在遇到右括号时,检查…

LeetCode刷题---打家劫舍问题

顾得泉:个人主页 个人专栏:《Linux操作系统》 《C/C》 《LeedCode刷题》 键盘敲烂,年薪百万! 一、打家劫舍 题目链接:打家劫舍 题目描述 你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定…

Java实现堆

堆是一种基于完全二叉树的数据结构,它分为大根堆和小根堆。在大根堆中,每个节点的值都大于或等于其子节点的值;而在小根堆中,每个节点的值都小于或等于其子节点的值。 在Java中,我们可以使用数组来表示堆。由于完全二…

RS232串口_笔记

这里写目录标题 1、RS232串口理论起始位数据位校验位LSB & MSB示波器查看数据信号对应连接方式 1、RS232串口理论 UART(通用异步收发传输) 是一种通信协议,而 RS232 (串行通信接口)是种物理接口标准。UART 是一种用于在计算机和外部设备之间传输数据的协议&…

鸿蒙系统开发手册 - HarmonyOS内核驱动层源码分析

众所周知系统定义HarmonyOS是一款“面向未来”、面向全场景(移动办公、运动健康、社交通信、媒体娱乐等)的分布式操作系统。在传统的单设备系统能力的基础上,HarmonyOS提出了基于同一套系统能力、适配多种终端形态的分布式理念,能…

链表高频面试题

1. 两个链表第一个公共子节点 LeetCode160 给你两个单链表的头节点 headA 和 headB ,请你找出并返回两个单链表相交的起始节点。如果两个链表不存在相交节点,返回 null 。 图示两个链表在节点 c1 开始相交: listA [4,1,8,4,5], listB [5…

11-22 SSM3

书城分页查询 使用mybatis分页插件: 请完成登陆注册 -> 跳转到首页 解决前端上架时间点击切换 以及侧边栏点击由背景颜色的改变 完成超链接的绑定点击时间 -> jquery $(document).ready(function() { // 初始化上架时间状态为 true(上架&…

记录一次爱快路由ACL策略引起的大坑

环境: A公司和B公司采用爱快的ipsec互联 B公司同时有加密软件限制网络 问题:对方ERP无法连接我们的数据库服务器 先简单测试了下1433端口是不是通的 下面的测试结果,直接ping是通的,但是加上1433端口后就不通 排查过程&#xff1…

centos7下执行yum命令报错

前言 在Linux系统中,安装nginx时候,需要先安装环境。 Nginx是使用C语言开发,安装nginx需要先从官网上将源码下载,然后编译,编译需要gcc环境,但是在安装gcc环境的时候,执行命令报错。 yum install –y gcc-…

【开源】基于JAVA的大学计算机课程管理平台

项目编号: S 028 ,文末获取源码。 \color{red}{项目编号:S028,文末获取源码。} 项目编号:S028,文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 实验课程档案模块2.2 实验资源模块2…

有什么值得推荐的node. js练手项目吗?

前言 可以参考一下下面的nodejs相关的项目,希望对你的学习有所帮助,废话少说,让我们直接进入正题 1、 NodeBB Star: 13.3k 一个基于Node.js的现代化社区论坛软件,具有快速、可扩展、易于使用和灵活的特点。它支持多种数据库&…

使用JAVA语言写一个排队叫号的小程序

以下是一个简单的排队叫号的小程序&#xff0c;使用JAVA语言实现。 import java.util.LinkedList; import java.util.Queue; import java.util.Scanner;public class NumberingSystem {public static void main(String[] args) {Queue<String> queue new LinkedList<…

WPF绘制进度条(弧形,圆形,异形)

前言 WPF里面圆形进度条实现还比较麻烦,主要涉及到的就是动态绘制进度条的进度需要用到简单的数学算法。其实原理比较简单,我们需要的是话两条重叠的弧线,里面的弧线要比里面的弧线要宽,这样简单的雏形就出来了。 基础写法 我们可以用Path来绘制弧线,代码如下: <Gr…

推荐几款python在线学习和电子书网站

学习python的过程中&#xff0c;虽然下载了很多的电子书&#xff0c;但是在学习过程中基本上都是通过一些在线网站或者在线电子书进行的。 下面给大家推荐几个在线学习教程网站和电子书网站。 《菜鸟教程》 一句话介绍&#xff1a;很多初学者的选择 网址&#xff1a;https:…

C++11——右值引用和移动语义

左值和右值 在C11之前&#xff0c;我们很少去关注左值和右值这一概念&#xff0c;但是在C11中&#xff0c;加入了一个非常重要的语法&#xff1a;右值引用。 左值和右值&#xff0c;一般来说可以当作字面意思&#xff0c;左值是经常出现在表达式左边的值&#xff0c;右值是经…

【开源视频联动物联网平台】写一个物联网项目捐献给Dromara组织

一、平台简介 MzMedia开源视频联动物联网平台&#xff0c;简单易用&#xff0c;更适合中小企业和个人学习使用。适用于智能家居、农业监测、水利监测、工业控制&#xff0c;车联网&#xff0c;监控直播&#xff0c;慢直播等场景。 支持抖音&#xff0c;视频号等主流短视频平台…

Linux--系统结构与操作系统

文章目录 冯诺依曼体系结构为什么要有内存&#xff1f;场景一 操作系统何为管理&#xff1f; 冯诺依曼体系结构 冯诺依曼体系结构是计算机体系结构的基本原理之一。它将程序和数据都以二进制形式存储&#xff0c;以相同的方式处理和存取。 上图是冯诺依曼体系结构的五大组成部…

处理机调度与作业调度

处理机调度 一个批处理型作业&#xff0c;从进入系统并驻留在外存的后备队列上开始&#xff0c;直至作业运行完毕&#xff0c;可能要经历如下的三级调度 高级调度 也称为作业调度、长程调度、接纳调度。调度对象是作业 主要功能&#xff1a; 挑选若干作业进入内存 为作业创建…

git push 报错 error: src refspec master does not match any 解决

git报错 ➜ *** git:(main) git push -u origin "master" error: src refspec master does not match any error: failed to push some refs to https://gitee.com/***/***.git最新版的仓库初始化后 git 主分支变成了 main 方法 1.把 git 默认分支名改回 master …