2023.11.28 使用tensorflow进行“三好“权重分析

2023.11.28 使用tensorflow进行"三好"权重分析

这是最基础的一个神经网络问题。许久没有再使用,用来做恢复训练比较好。

x1w1 + x2w2 +x3*w3 = y,已知x1,x2,x3和y,求w1,w2,w3
这是一个三元一次方程,正常需要三组数据就能准确求出解,但是如果要在仅有两组数据的情况下进行求解,除使用暴力法外,采用神经网络是一个不错的选择,网络模型图如下
在这里插入图片描述

'''
    尝试最基础的tensorflow应用:三好学生的"三好"权重分析
    问题:
    "三好"指的是品德好,学习好,体育好,有两组分数和各组分数综合值,求每个分数的权重
'''

import tensorflow.compat.v1 as tf      # tf2.0版本改动太大,如果要按1.X版本的格式写需要调用这个库
tf.disable_v2_behavior()               # tf2.0版本改动太大,如果要按1.X版本的格式写需要调用这个库

x1 = tf.placeholder(dtype=tf.float32)
x2 = tf.placeholder(dtype=tf.float32)
x3 = tf.placeholder(dtype=tf.float32)
yTrain = tf.placeholder(dtype=tf.float32)
'''
    在TensorFlow 1.X中,创建占位符并在tf.Session实例化时为其提供实际值。
    但是,从TensorFlow2.0开始,默认情况下启用了Eager Execution,
    因此“占位符”的概念没有意义,因为操作是立即计算的(而不是与旧范例不同)
'''

w1 = tf.Variable(0.1,dtype=tf.float32)                  # 0.1是w1的初始化参数
w2 = tf.Variable(0.1,dtype=tf.float32)
w3 = tf.Variable(0.1,dtype=tf.float32)

n1 = x1 * w1
n2 = x2 * w2
n3 = x3 * w3

y = n1 + n2 + n3

loss = tf.abs(y - yTrain)           # 使用.abs(绝对值),是使实际值和目标值差距最小,而不是损失函数数字最小
learning_rate = 0.001

optimizer = tf.train.RMSPropOptimizer(learning_rate)        # 选择优化器/分类器

train = optimizer.minimize(loss)                # 训练模型,目标是loss最小

sess = tf.Session()
init = tf.global_variables_initializer()        # 初始化前述张量(tf.)
sess.run(init)

for i in range(5000):
    result = sess.run([train,x1,x2,x3,w1,w2,w3,y,yTrain,loss],feed_dict={x1:90,x2:80,x3:70,yTrain:85})
    print(result)

    result = sess.run([train, x1, x2, x3, w1, w2, w3, y, yTrain, loss], feed_dict={x1: 98, x2: 95, x3: 87, yTrain: 96})
    print(result)

循环5000次,输出结果
在这里插入图片描述

# 输出结果解释
第一个元素 None 表示训练操作 train 的执行结果为空。
第二个元素 array(98., dtype=float32) 表示输入占位符 x1 的值为 98。
第三个元素 array(95., dtype=float32) 表示输入占位符 x2 的值为 95。
第四个元素 array(87., dtype=float32) 表示输入占位符 x3 的值为 87。
第五个元素 0.5828438 表示权重变量 w1 的值为 0.5828438。
第六个元素 0.2860972 表示权重变量 w2 的值为 0.2860972。
第七个元素 0.13144642 表示权重变量 w3 的值为 0.13144642。
第八个元素 96.03325 表示模型输出 y 的值为 96.03325。
第九个元素 array(96., dtype=float32) 表示目标输出占位符 yTrain 的值为 96。
最后一个元素 0.0332489 表示损失函数 loss 的值为 0.0332489。

对比循环500次,输出结果,循环500次loss尚未稳定,和最终结果存在较大偏差
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/205277.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

IC修真院 | 芯片嵌入式课程重磅上线!

万物互联的时代,离不开嵌入式。 从传统的家用电器到工业控制,从汽车电子到医疗保健,从军事应用到物联网,嵌入式系统无处不在。 我们的后台也经常能收到大家关于“嵌入式”的咨询,也了解到了大家对于嵌入式课程的迫切…

虚幻学习笔记1—给UI添加动画

一、前言 本文所使用的虚幻版本为5.3.2,之前工作都是用unity,做这类效果用的最多的是一个DoTween的插件,在虚幻中都内置集成了这这种效果制作。 图1.1 UI动画 二、过程 1、首先,在诸如按钮、图像等可交互控件中选中,如…

MySQL进阶知识:InnoDB引擎

目录 逻辑存储结构 架构 内存结构 Buffer Pool Change Buffer Adaptive Hash Index Log Buffer 磁盘结构 后台线程 事务原理 redo log undo log MVCC 隐式字段 undo log版本链 readView 逻辑存储结构 这张图在我之前的笔记中出现过,接下来我们详细介…

力扣6:N字形变化

代码&#xff1a; class Solution { public:string convert(string s, int numRows){int lens.size();if(numRows1){return s;}int d2*numRows-2;int count0;string ret;//第一行&#xff01;for(int i0;i<len;id){rets[i];}//第k行&#xff01;for(int i1;i<numRows-1;…

智能优化算法应用:基于树种算法无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于树种算法无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于树种算法无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.树种算法4.实验参数设定5.算法结果6.参考文献7.MATLAB…

探索港口机械设备健康管理解决方案

在当今港口行业&#xff0c;机械设备的健康管理对于保障港口运营的高效性和可持续发展至关重要。随着港口吞吐能力的不断增加和机械设备的复杂化&#xff0c;探索有效的机械设备健康管理解决方案成为了当务之急。本文将从多个方面探讨如何加强港口机械设备的健康管理。 图.港口…

时间序列预测实战(二十一)PyTorch实现TCN卷积进行时间序列预测(专为新手编写的自研架构)

一、本文介绍 本篇文章给大家带来的是利用我个人编写的架构进行TCN时间序列卷积进行时间序列建模&#xff08;专门为了时间序列领域新人编写的架构&#xff0c;简单不同于市面上大家用GPT写的代码&#xff09;&#xff0c;包括结果可视化、支持单元预测、多元预测、模型拟合效…

【多属性对象“{a:1,b:2}”】与【单属性对象的数组“[{a:1},{b:2}]”】的相互转换

前端开发的某些场景&#xff08;比如用echarts开发某些可视化图表&#xff09;经常需要将【多属性对象&#xff0c;如“{a:1,b:2}”】与【单属性对象的数组&#xff0c;如“[{a:1},{b:2}]”】做相互转换&#xff0c;以下是不通过循环&#xff0c;简洁实现这种转换的方法&#x…

如何选择共模噪声滤波器

在当前电子产品中&#xff0c;绝大多数的高速信号都使用地差分对结构。 差分结构有一个好处就是可以降低外界对信号的干扰&#xff0c;但是由于设计的原因&#xff0c;在传输结构上还会受到共模噪声的影响。 共模噪声滤波器就可以用于抑制不必要的共模噪声&#xff0c;而不会对…

2021年9月15日 Go生态洞察:TLS加密套件的自动排序机制

&#x1f337;&#x1f341; 博主猫头虎&#xff08;&#x1f405;&#x1f43e;&#xff09;带您 Go to New World✨&#x1f341; &#x1f984; 博客首页——&#x1f405;&#x1f43e;猫头虎的博客&#x1f390; &#x1f433; 《面试题大全专栏》 &#x1f995; 文章图文…

【RabbitMQ】RabbitMQ快速入门 通俗易懂 初学者入门

目录 1.初识MQ 1.1.同步和异步通讯 1.1.1.同步通讯 1.1.2.异步通讯 1.2.技术对比&#xff1a; 2.快速入门 2.1.安装RabbitMQ 2.2.RabbitMQ消息模型 2.3.导入Demo工程 2.4.入门案例 2.4.1.publisher实现 2.4.2.consumer实现 2.5.总结 3.SpringAMQP 3.1.Basic Que…

java+springboot物流管理系统设计与实现wl-ssmj+jsp

物流管理系统的开发和综合性的物流信息网站平台的建设。研究的重点是运输管理信息系统&#xff0e;本系统是一套基于运输作业流程的管理系统&#xff0c;该系统以运输任务、货品、商务三大线索设计开发。运输任务是该管理系统的核心&#xff0c;系统通过对运输任务中的接收、调…

Redis安装和部署详细流程

文章目录 一、Windows环境下安装 Redis1.1 下载Redis1.2 启动redis服务器1.3 启动redis客户端1.4 配置环境变量 参考资料 一、Windows环境下安装 Redis windows系统环境下&#xff0c;redis安装方式主要有&#xff1a; zip压缩包方式 https://redis.io/download 或者 https:/…

【CAN通信】CanIf模块详细介绍

目录 1.内容简介 2.CanIf详细设计 2.1 CanIf功能简介 2.2 一些关键概念 2.3依赖的上下层模块 2.4 功能详细设计 2.4.1 Hardware object handles 2.4.2 Static L-PDUs 2.4.3 Dynamic L-PDUs 2.4.4 Dynamic Transmit L-PDUs 2.4.5 Dynamic receive L-PDUs 2.4.6Physi…

windows文件删除权限

一、普通文件 这里指的是所有可以被随意删除的文件。 二、可更改权限的文件 如果想要删除的文件无法被删除&#xff0c;那大概是权限不够&#xff0c;这时候&#xff1a;鼠标右键、属性、安全、编辑、选择相应的组或用户&#xff08;如果不知道哪个可以全选&#xff0c;反正…

YouTube宣布要求披露AI生成的内容并添加标签

不知道大家在逛YouTube的时候有没有刷到过一些画面和人物看起来不太自然的视频。 没错&#xff0c;这些视频里面的画面和人物可能都是由AI生成的。 近日&#xff0c;YouTube 产品管理副总裁在官方博客文章上表示&#xff1a;生成式 AI 有潜力在 YouTube 上激发创造力&#xff…

“学习Python能用来做什么?”

文章目录 前言01 Web开发为什么需要Web框架应该使用哪种Python Web框架Django和Flask有什么区别如何选择 02 数据科学机器学习是什么将Python用于机器学习数据分析和数据可视化使用Python进行数据分析/可视化如何用Python学习数据分析/可视化 03 脚本什么是脚本&#xff1f; 04…

FreeRTOS:TCB_t结构体解读(转载)

TCB_t&#xff1a;任务控制块 TCB_t的全称为Task Control Block&#xff0c;也就是任务控制块&#xff0c;这个结构体包含了一个任务所有的信息&#xff0c;它的定义以及相关变量的解释如下&#xff1a; typedef struct tskTaskControlBlock {// 这里栈顶指针必须…

模拟算法【2】

文章目录 &#x1f958;6. N 字形变换&#x1f372;题目&#x1fad5;算法原理&#x1f963;代码实现 &#x1f957;38. 外观数列&#x1f37f;题目&#x1f9c2;算法原理&#x1f9c8;代码实现 &#x1f958;6. N 字形变换 &#x1f372;题目 题目链接&#xff1a;6. N 字形变…

[vue3] 使用 vite 创建vue3项目的详细流程

一、vite介绍 Vite&#xff08;法语意为 “快速的”&#xff0c;发音 /vit/&#xff0c;发音同 “veet”) 是一种新型前端构建工具&#xff0c;能够显著提升前端开发体验&#xff08;热更新、打包构建速度更快&#xff09;。 二、使用vite构建项目 【学习指南】学习新技能最…