20. Matplotlib 数据可视化

目录

    • 1. 简介
    • 2. Matplotlib 开发环境
      • 2.1 画图
      • 2.2 画图接口
      • 2.4 线形图
      • 2.5 散点图
      • 2.6 等高线图
      • 2.7 直方图

1. 简介

Matplotlib网址:https://matplotlib.org/

数据可视化是数据分析中最重要的工作之一。Matploblib是建立在Numpy数组基础上的多平台数据可视化程序库,专门用于开发2D图表(包括3D图表)。matploblib继承了Matlab的交互性,用户可以逐条输入命令,为数据生成渐趋完整的图形表示。

Matplotlib注意有如下优点:

  • 使用简单。
  • 以渐进、交互式方式实现数据可视化。
  • 表达式和文本使用LaTeX排版。
  • 对图像元素控制力强。
  • 可输出PNG、PDF、SVG和EPS。

安装和导入Matplotab

# 安装Pandas
'''Windows 按住win+R 输入 cmd,Mac 打开Terminal
conda install matplotlib
pip install matplotlib
'''
import matplotlib as mpl # 导入模块
import matplotlib.pyplot as plt # 导入模块方法

2. Matplotlib 开发环境

Matplotlib 有3种开发环境,分别是脚本、IPython shell 和 IPython Notebook。

2.1 画图

在脚本中画图

如果在一个脚本文件中使用Matplotlib,那么现实图形的时候必须使用plt.show()启动一个事件循环(event loop),并找到所有当前可用的图形对象,然后打开一个或多个交互式窗口显示图形。

# 方法一
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(0,10,100) # 生成1~10中100个等差数
plt.plot(x,np.sin(x)) # 正弦曲线
plt.plot(x,np.cos(x)) # 余弦曲线
plt.show() # 画图

在这里插入图片描述

import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(0,10,100)
fig = plt.figure()
plt.plot(x,np.sin(x))
plt.plot(x,np.cos(x))

在IPython shell中画图

在IPython中使用%matplotlib魔法命令,启动Matplotlib模式,就不需要使用plt.show()。

%matplotlib
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(0,10,100)
plt.plot(x,np.sin(x))
plt.plot(x,np.cos(x))

在IPython Notebook中画图

IPython Notebook 是一款基于浏览器的交互式数据分析工具,可以将描述文字、代码、图形、HTML元素以及更多的媒体形式组合起来,集成到单个可执行的Notebook文档中。

  • %matplotlib notebook:在Notebook中启动交互式图形。
  • %matplotlib inline:在Notebook中启动静态图形。
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(0,10,100)
fig = plt.figure()
plt.plot(x,np.sin(x))
plt.plot(x,np.cos(x))

2.2 画图接口

Matplotlib 提供了两种画图接口:一种是便捷的Matlab风格接口,另一个是功能更强大的面向对象接口。

Matlab 风格接口:最重要的特性是有状态的(stateful),它持续跟踪当前的图形和坐标轴,所有plt命令都可以应用。可以使用plt.gcf()获取当前图形的具体信息,使用plt.gca()获取当前坐标轴的具体信息。

import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(0,10,100)
plt.figure() # 创建图形
plt.subplot(2,1,1) # 创建两个子图中的第一个,设置坐标轴,行、列、子图编号
plt.plot(x,np.sin(x))
plt.subplot(2,1,2) # 创建两个子图中的第二个,设置坐标轴
plt.plot(x,np.cos(x))

面向对象接口:可适应更复杂的场景,可以更好地控制图形。画图函数不再受到当前活动的图形或坐标轴的限制,而变成了显式的Figure和Axes的方法。复杂图形时,面向对象接口方法更方便。

import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(0,10,100)
fig,ax = plt.subplots(2) # 创建图形网格,ax是一个包含两个Axes对象的数组
ax[0].plot(x,np.sin(x))
ax[1].plot(x,np.cos(x))

在这里插入图片描述

2.4 线形图

线性图形就是方程y=f(x)使用plt.style可以选择图形的绘图风格。figure 可以被看成是一个能够容纳各种坐标轴、图形、文字和标签的容器。axes 是一个带有刻度和标签的矩形,最终包含所有可视化的图形元素。

plt.style.use('seaborn-whitegrid') # 
fig = plt.figure() # 创建一个图形 fig
ax = plt.axes() # 创建一个坐标 ax
x = np.linspace(0,10,1000)
ax.plot(x,np.sin(x)) # 使用 ax.plot画图
plt.plot(x,np.cos(x)) # 使用 pylab 接口画图

调整线条的颜色与风格

put.plot()函数可以通过相应的参数设置颜色与风格。要修改颜色,可以使用color参数,它支持各种颜色值的字符串。

plt.plot(x,np.sin(x-0),color='blue') # 标准颜色名称
plt.plot(x,np.sin(x-1),color='g') # 缩写颜色代码
plt.plot(x,np.sin(x-2),color='0.75') # 范围在0~1的灰度值
plt.plot(x,np.sin(x-3),color='#FFDD44') # 十六进制(RRGGBB,00~FF)
plt.plot(x,np.sin(x-4),color=(1.0,0.2,0.3)) # RGB 元组,范围0~1
plt.plot(x,np.sin(x-5),color='chartreuse') # HTML 颜色名称

在这里插入图片描述

使用linestyle可以调整线条的风格

plt.plot(x,x+0,linestyle='solid')
plt.plot(x,x+1,linestyle='dashed')
plt.plot(x,x+2,linestyle='dashdot')
plt.plot(x,x+3,linestyle='dotted')
plt.plot(x,x+4,linestyle='-') # 实线
plt.plot(x,x+5,linestyle='--') # 虚线
plt.plot(x,x+6,linestyle='-.') # 点画线
plt.plot(x,x+7,linestyle=':') # 实点线

在这里插入图片描述

也可以将linestyle和color组合起来,作为plt.plot()函数的一个非关键字使用。

plt.plot(x,x+0,'-g') # 绿色实线
plt.plot(x,x+1,'--c') # 青色虚线
plt.plot(x,x+2,'-.k') # 黑色点画线
plt.plot(x,x+3,':r') # 红色实点线

在这里插入图片描述

调整坐标轴上下限和设置图形标签

Matplotlib 自动为图形选择最合适的坐标轴上下限,但是有时自定义坐标轴上下限可能会更好。调整坐标轴上下限最基础的方法是plt.xlim()和plt.ylim()。

也可以使用plt.axis(),通过传入[xmin,xmax,ymin,ymax]对应的值,它还可以按照图形的内容自动收紧坐标轴,不留空白区域。

import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(0,10,100)
fig = plt.figure()
plt.plot(x,np.sin(x))
# plt.xlim(-1,11)
# plt.ylim(-1.5,1.5)
plt.axis([-1,11,-1.5,1.5])
plt.axis('tight') # 根据内容自动收紧坐标轴,不留空白
plt.axis('equal') # 设置分辨率为1:1,x轴单位长度和y轴单位长度相等
plt.title('y=sin(x)') # 标题
plt.xlabel('x') # x轴标题
plt.ylabel('sin(x)') # y轴标题

在这里插入图片描述

也可以使用plt.legend()方法创建图例。将每条的标签与其风格、颜色自动匹配。

plt.plot(x,np.sin(x),'-g',label='sin(x)')
plt.plot(x,np.cos(x),':b',label='cos(x)')
plt.axis('equal')
plt.legend() # 自动匹配

在这里插入图片描述

2.5 散点图

散点图是由独立的恶点、圆圈或其它形状构成的。

使用plt.plot/ax.plot画散点图。

%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
plt.style.use('seaborn-whitegrid')
x = np.linspace(0,10,30)
y = np.sin(x)
plt.plot(x,y,'o',color='black')
rng = np.random.RandomState(0)
for marker in ['o','.',',','x','+','v','^','<','>','s','d']:
    plt.plot(rng.rand(5),rng.rand(5),marker,label="marker='{0}'".format(marker))
    plt.legend(numpoints=1)
    plt.xlim(0,1.8)

在这里插入图片描述

plt.plot(x,y,'-ok') # 直线(-)、圆圈(o)、黑色(k)

plt.plot(x,y,'-p',color='gray',markersize=15,linewidth=4,
         markerfacecolor='white',
         markeredgecolor='gray',
         markeredgewidth=2)
plt.ylim(-1.2,1.2)

plt.scatter函数画散点图。

plt.scatter与plt.plot的主要区别:前者在创建散点图时具有更高的灵活性,可以单独控制每个散点图与数据匹配,也可以让每个散点图具有不同的属性(大小、表面颜色、边框颜色等)

rng = np.random.RandomState(0)
x = rng.randn(100)
y = rng.randn(100)
colors = rng.rand(100)
sizes = 1000*rng.rand(100)
plt.scatter(x,y,c=colors,s=sizes,alpha=0.3,cmap='viridis')
plt.colorbar()

在这里插入图片描述

from sklearn.datasets import load_iris
iris = load_iris()
features = iris.data.T
plt.scatter(features[0],features[1],alpha=0.2,
            s=100*features[3],c=iris.target,cmap='viridis')
plt.xlabel(iris.feature_names[0])
plt.ylabel(iris.feature_names[1])

在这里插入图片描述

数据量较小的时候,plt.plot与plt.scatter在效率上差异不大,但是当数据大的时候,plt.plot的效率将大大高于plt.scatter。

2.6 等高线图

使用plt.contour可以画等高线图,可以画带有填充色的等高线图的色彩,使用plt.imshow可以显示图形。

%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
plt.style.use('seaborn-white')
def f(x,y):
    return np.sin(x)**10+np.cos(10+y*x)*np.cos(x)
x = np.linspace(0,5,50) # 0~5中50个等差数字
y = np.linspace(0,5,40)
X,Y = np.meshgrid(x,y) # 从一维数组构建二维网格数据
Z = f(X,Y)
# plt.contour(X,Y,Z,colors='black') # 画标准的线形等高线图
plt.contour(X,Y,Z,20,cmap='RdGy') # 设置一个线条配色方案自定义颜色,将数据范围等分为20份;红-灰
plt.colorbar() # 自动创建一个表示图形各种颜色对应的标签颜色条

在这里插入图片描述

contours = plt.contour(X,Y,Z,3,colors='black')
plt.clabel(contours,inline=True,fontsize=8)
plt.imshow(Z,extent=[0,5,0,5],origin='lower',cmap='RdGy',alpha=0.5)# alpha 设置透明度
plt.colorbar()

在这里插入图片描述

2.7 直方图

一维直方图:创建一个简易的频次直方图

%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
plt.style.use('seaborn-white')

# data = np.random.randn(1000)
# plt.hist(data,bins=30,density=True,alpha=0.5,
#          histtype='stepfilled',color='steelblue',
#          edgecolor='none')

x1 = np.random.normal(0,0.8,1000)
x2 = np.random.normal(-2,1,1000)
x3 = np.random.normal(3,2,1000)
kwargs = dict(histtype='stepfilled',alpha=0.3,density=True,bins=40)
plt.hist(x1,**kwargs)
plt.hist(x2,**kwargs)
plt.hist(x3,**kwargs)
print(counts) # 查看每段区间样本数 [ 16 249 565 165   5]

在这里插入图片描述

二维直方图:将二维数组按照二维区间进行切分创建二维频次直方图。

使用plt.hist2d

mean = [0,0]
cov = [[1,1],[1,2]]
x,y = np.random.multivariate_normal(mean,cov,10000).T
plt.hist2d(x,y,bins=30,cmap='Blues')
cb = plt.colorbar()
cb.set_label('counts in bin')
counts,xedges,yedges = np.histogram2d(x,y,bins=30)

在这里插入图片描述

使用plt.hexbin,正六边形分割,将二维数据集成分割成蜂窝状

plt.hexbin(x,y,gridsize=30,cmap='Blues')
cb = plt.colorbar(label='count in bin')

核密度估计:使用KDE方法抹除空间中离散的数据点,从而拟合一个平滑的函数。

from scipy.stats import gaussian_kde
data = np.vstack([x,y])
kde = gaussian_kde(data)
xgrid = np.linspace(-3.5,3.5,40)
ygrid = np.linspace(-6,6,40)
Xgrid,Ygrid = np.meshgrid(xgrid,ygrid)
Z = kde.evaluate(np.vstack([Xgrid.ravel(),Ygrid.ravel()]))
plt.imshow(Z.reshape(Xgrid.shape),origin='lower',
           aspect='auto',extent=[-3.5,3.5,-6,6],cmap='Blues')
cb = plt.colorbar(label='density')

在这里插入图片描述

KDE 方法通过不同的平滑带宽长度在拟合函数的准确性和平滑性之间做出权衡。gaussian_kde通过一种经验方法试图找到输入数据平滑长度的近似最优解。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/203639.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

计算机毕业设计 基于Web的课程设计选题管理系统的设计与实现 Java实战项目 附源码+文档+视频讲解

博主介绍&#xff1a;✌从事软件开发10年之余&#xff0c;专注于Java技术领域、Python人工智能及数据挖掘、小程序项目开发和Android项目开发等。CSDN、掘金、华为云、InfoQ、阿里云等平台优质作者✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精…

【Windows】解决Windows11错误0x80190001

1. 安装Fiddler网络调试工具 下载链接&#xff1a;Fiddler Classic 注&#xff1a;获取安装包的过程中可能要获取邮箱信息&#xff0c;但不用验证邮箱&#xff0c;大概是给你的邮箱发广告信息&#xff0c;问题不大。 在“开始”界面找到Fiddler Classic&#xff0c;点击运行…

如何修改.exe文件的修改时间,亲测有效

&#x1f482; 个人网站:【 海拥】【神级代码资源网站】【办公神器】&#x1f91f; 基于Web端打造的&#xff1a;&#x1f449;轻量化工具创作平台&#x1f485; 想寻找共同学习交流的小伙伴&#xff0c;请点击【全栈技术交流群】 演示视频&#xff1a; 10秒钟实现将文件的修改…

【Spring系列】DeferredResult异步处理

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

【Node.js】解决npm报错:RequestError: unable to verify the first certificate

1. 问题简述 帖主从nodejs官网下载安装nodejs后&#xff0c;发现使用以下命令安装electron会报错&#xff1a; npm install electron 报错信息如下&#xff1a; npm ERR! RequestError: unable to verify the first certificate 2. 解决方案 网上列举的方案&#xff0c;无…

uniapp项目打包h5,支持文件协议,使用vconsole调试移动端

uniapp项目需要打包h5&#xff0c;并且需要嵌套到一个原生的移动端项目中&#xff0c;需要支持文件协议能直接访问 打包设置 设置./基础路径 引入vconsole调试移动端 <script src"https://unpkg.com/vconsole/dist/vconsole.min.js"></script>可以将…

数字系列——数字经济(2)​

上次呢&#xff0c;已经为大家捋了什么是数字经济&#xff1f;、数字经济的特点有哪些&#xff1f;和数字经济的构成&#xff0c;对于数字经济有了基础性的了解&#xff0c;今天继续为大家捋一捋。 数字经济的发展 1.互联网的普及 互联网作为数字经济的坚实基础&#xff0c;其…

猫头虎分享ubuntu20.04下VSCode无法输入中文解决方法

&#x1f337;&#x1f341; 博主猫头虎 带您 Go to New World.✨&#x1f341; &#x1f984; 博客首页——猫头虎的博客&#x1f390; &#x1f433;《面试题大全专栏》 文章图文并茂&#x1f995;生动形象&#x1f996;简单易学&#xff01;欢迎大家来踩踩~&#x1f33a; &a…

dbCAN碳水化合物酶基因数据库及run_dbCAN4工具安装配置及使用

dbCAN&#xff08;碳水化合物酶基因数据库&#xff09;是一个专门用于在基因组中预测碳水化合物酶基因的在线工具。它基于隐马尔可夫模型&#xff08;HMM&#xff09;和BLAST搜索&#xff0c;能够在蛋白质序列中识别和注释不同类型的碳水化合物酶基因&#xff0c;包括纤维素酶、…

logcat日志的使用——Qt For Android

前言 最近一直用qt开发安卓app&#xff0c;一直无法用真机调试&#xff0c;可能是缺什么东西。但是如果通过Qt Creator在真机上运行&#xff0c;可以在电脑控制台看打印&#xff08;安卓本身的日志、qDebug之类的打印&#xff09;&#xff0c;所以我是通过打印猜测问题所在&am…

Flutter 控件查阅清单

为了方便记录和使用Flutter中的各种控件&#xff0c;特写此博客以记之&#xff0c;好记性不如烂笔头嘛&#xff1a;&#xff09; 通过控件的首字母进行查找&#xff0c;本文会持续更新 控件目录 AAppBar BCContainerColumn &#xff08;列&#xff09; DDivider (分割线) EElev…

基于安卓的2048益智游戏的设计与实现

基于安卓的2048益智类游戏的设计与实现 摘要&#xff1a;现如今随着社会日新月异&#xff0c;人们越来越离不开智能手机所提供的灵活性与便携性。安卓系统是在这股手机发展迅猛的潮流中其市场占有率过半的手机平台&#xff0c;基于安卓系统的游戏开发有着不可估量的前景。 本论…

pip安装python包(pytorch)时遇到超时现象的通用解决方案

最近在使用服务器配置pytorch环境的时候&#xff0c;遇到了极为恼火的事情&#xff0c;使用pytorch官方的命令来下载GPU版本的pytorch总会是不是下载到一半就会崩溃&#xff0c;然而pip下载并不会断点续传&#xff08;什么时候能出这个功能啊喂&#xff01;&#xff09;。每次下…

Android中实现RecyclerView,并对item及其多个子控件的点击事件监听

目录 背景 实现RecyclerView 第一步、 新建item的xml 第二步、在activity的布局中引入 RecyclerView 第三步、新建一个adapter 第四步、在activity中初始化绑定adapter即可 实现item及其多个子组件点击事件监听 第一步、 适配器中创建监听对象 第二步、适配器中绑定监听…

编码未来已然来临:无代码、低代码助力软件驱动世界

在当今时代&#xff0c;企业无不致力于探寻能够实现降本增效的有效路径。在众多热门技术中&#xff0c;AI人工智能和机器学习等概念已经被广泛采纳并应用于各行业的实际业务场景中。当企业开始树立起数字化意识&#xff0c;他们通常会选择以下两条路径中的一条来实现数字化转型…

如何运用智能安全帽、执法记录仪等技术手段提高隧道施工人员定位和安全监管效率?

应用需求 隧道中通常没有4G网络&#xff0c;无法搜到GPS卫星&#xff0c; 而领导从安全生产监管的角度&#xff0c;又需要看到现场的视频、录像、人员定位等。这正是本方案需要解决的问题。 系统特点 在无网络的隧道内部录像&#xff0c;紧急情况可派人出隧道&#xff0c;把…

SimpleCG小游戏开发系列(1)--扫雷

一、前言 前面我们学习了SimpleCG的游戏开发框架,从本篇开始,我们用一系列小游戏的开发来加深对框架的了解.我们先以windows的经典游戏--扫雷,作为首个例子。游戏预览如下 二、框架搭建 因为游戏程序的大体框架差不多&#xff0c;所以我们可以搭建一个通用的主程序。如下所示&a…

PC模糊搜索

双向绑定input输入框&#xff0c;监听值改变事件 <el-inputinput"input"v-model"queryParams.keyword"style"margin-bottom: 10px"type"text"prefix-icon"el-icon-search"size"small"placeholder"输入员工…

zookeeper集群(很少用)+kafka集群(常用)

一、zookeeper zookeeperkafka&#xff08;2.7.0版本&#xff09; kafka&#xff08;3.4.1版本&#xff09;不依赖于zookeeper 1、定义&#xff1a;zookeeper开源&#xff0c;分布式架构&#xff0c;提供协调服务&#xff08;Apache项目&#xff09;&#xff0c;基于观察者模…

【Python | 测试】assert 断言最佳实践

&#x1f935;‍♂️ 个人主页: AI_magician &#x1f4e1;主页地址&#xff1a; 作者简介&#xff1a;CSDN内容合伙人&#xff0c;全栈领域优质创作者。 &#x1f468;‍&#x1f4bb;景愿&#xff1a;旨在于能和更多的热爱计算机的伙伴一起成长&#xff01;&#xff01;&…